BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32981972)

  • 21. Micro-scale blood particulate dynamics using a non-uniform rational B-spline-based isogeometric analysis.
    Chivukula V; Mousel J; Lu J; Vigmostad S
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1437-59. PubMed ID: 25132674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orthotropic active strain models for the numerical simulation of cardiac biomechanics.
    Rossi S; Ruiz-Baier R; Pavarino LF; Quarteroni A
    Int J Numer Method Biomed Eng; 2012; 28(6-7):761-88. PubMed ID: 25364850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-Level Finite Element Iterative Algorithm Based on Stabilized Method for the Stationary Incompressible Magnetohydrodynamics.
    Tang Q; Hou M; Xiao Y; Yin L
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of the Achilles Subtendons and Their Interactions in a Framework of the Absolute Nodal Coordinate Formulation.
    Obrezkov LP; Finni T; Matikainen MK
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unified three-dimensional finite elements for large strain analysis of compressible and nearly incompressible solids.
    Pagani A; Chiaia P; Filippi M; Cinefra M
    Mech Adv Mat Struct; 2024; 31(1):117-137. PubMed ID: 38235485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Structural Analysis of Thin-Walled Structures Accomplished by Isogeometric Analysis and the Finite Element Method.
    Bocko J; Pleško P; Delyová I; Sivák P
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity.
    Karabelas E; Gsell MAF; Haase G; Plank G; Augustin CM
    Comput Methods Appl Mech Eng; 2022 May; 394():114887. PubMed ID: 35432634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sparsity regularization in dynamic elastography.
    Honarvar M; Sahebjavaher RS; Salcudean SE; Rohling R
    Phys Med Biol; 2012 Oct; 57(19):5909-27. PubMed ID: 22955065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.
    Hadjicharalambous M; Lee J; Smith NP; Nordsletten DA
    Comput Methods Appl Mech Eng; 2014 Jun; 274(100):213-236. PubMed ID: 25187672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
    Campos JO; Dos Santos RW; Sundnes J; Rocha BM
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2948. PubMed ID: 29181888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Formula: see text] regularity properties of singular parameterizations in isogeometric analysis.
    Takacs T; Jüttler B
    Graph Models; 2012 Nov; 74(6):361-372. PubMed ID: 24976795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A stabilized linear finite element method for anisotropic poroelastodynamics with application to cardiac perfusion.
    Thekkethil N; Rossi S; Gao H; Richardson SIH; Griffith BE; Luo X
    Comput Methods Appl Mech Eng; 2023 Feb; 405():. PubMed ID: 37600475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isogeometric Kirchhoff-Love shell formulations for biological membranes.
    Tepole AB; Kabaria H; Bletzinger KU; Kuhl E
    Comput Methods Appl Mech Eng; 2015 Aug; 293():328-347. PubMed ID: 26251556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A phase-field approach to model fracture of arterial walls: Theory and finite element analysis.
    Gültekin O; Dal H; Holzapfel GA
    Comput Methods Appl Mech Eng; 2016 Dec; 312():542-566. PubMed ID: 31649409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.