These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32982020)

  • 21. Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic.
    Khyar O; Allali K
    Nonlinear Dyn; 2020; 102(1):489-509. PubMed ID: 32921921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation.
    Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J
    Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability and numerical analysis via non-standard finite difference scheme of a nonlinear classical and fractional order model.
    Alrabaiah H; Din RU; Ansari KJ; Ur Rehman Irshad A; Ozdemir B
    Results Phys; 2023 Jun; 49():106536. PubMed ID: 37214757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model.
    Sweilam NH; Al-Mekhlafi SM; Baleanu D
    J Adv Res; 2021 Sep; 32():149-160. PubMed ID: 32864171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of global dynamics of COVID-19 via a new mathematical model.
    Din RU; Seadawy AR; Shah K; Ullah A; Baleanu D
    Results Phys; 2020 Dec; 19():103468. PubMed ID: 33078091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering.
    Ahmed N; Ali M; Rafiq M; Khan I; Nisar KS; Rehman MA; Ahmad MO
    Comput Methods Programs Biomed; 2020 Jul; 190():105350. PubMed ID: 32078958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19.
    Khan MS; Samreen M; Ozair M; Hussain T; Gómez-Aguilar JF
    Eur Phys J Plus; 2021; 136(8):853. PubMed ID: 34426778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On nonlinear classical and fractional order dynamical system addressing COVID-19.
    Shah K; Din RU; Deebani W; Kumam P; Shah Z
    Results Phys; 2021 May; 24():104069. PubMed ID: 33777668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of War and Conflict Effect on the Transmission Dynamics of the Tenth Ebola Outbreak in the Democratic Republic of Congo.
    Chapwanya M; Lubuma J; Terefe Y; Tsanou B
    Bull Math Biol; 2022 Oct; 84(12):136. PubMed ID: 36255647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability analysis of the coexistence equilibrium of a balanced metapopulation model.
    Rao S; Muyinda N; De Baets B
    Sci Rep; 2021 Jul; 11(1):14084. PubMed ID: 34238954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Analysis and Optimal Control of Rumor Spreading Model with Recurrence and Individual Behaviors in Heterogeneous Networks.
    Tong X; Jiang H; Chen X; Yu S; Li J
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic delayed analysis of coronavirus model through efficient computational method.
    Shahid N; Raza A; Iqbal S; Ahmed N; Fadhal E; Ceesay B
    Sci Rep; 2024 Sep; 14(1):21170. PubMed ID: 39256433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metapopulation models with anti-symmetric Lotka-Volterra systems.
    Anish AS; De Baets B; Rao S
    J Biol Dyn; 2024 Dec; 18(1):2397404. PubMed ID: 39238442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions.
    Ali Z; Rabiei F; Rashidi MM; Khodadadi T
    Eur Phys J Plus; 2022; 137(3):395. PubMed ID: 35368740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control.
    Naik PA; Zu J; Owolabi KM
    Chaos Solitons Fractals; 2020 Sep; 138():109826. PubMed ID: 32572309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical analysis of COVID-19 by using SIR model with convex incidence rate.
    Din RU; Algehyne EA
    Results Phys; 2021 Apr; 23():103970. PubMed ID: 33623731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate.
    Cheng X; Wang Y; Huang G
    Chaos Solitons Fractals; 2021 Dec; 153():111502. PubMed ID: 34744326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mathematical modeling for COVID-19 transmission dynamics: A case study in Ethiopia.
    Kifle ZS; Obsu LL
    Results Phys; 2022 Mar; 34():105191. PubMed ID: 35070650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal control strategy analysis for an human-animal brucellosis infection model with multiple delays.
    Wu M; Abdurahman X; Teng Z
    Heliyon; 2022 Dec; 8(12):e12274. PubMed ID: 36561671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics.
    Treibert S; Brunner H; Ehrhardt M
    Math Biosci Eng; 2022 Jan; 19(2):1213-1238. PubMed ID: 35135201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.