These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3298207)

  • 21. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae.
    Serrano R; Delafuente G
    Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087
    [No Abstract]   [Full Text] [Related]  

  • 22. Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae.
    Bisson LF; Fraenkel DG
    J Bacteriol; 1984 Sep; 159(3):1013-7. PubMed ID: 6384176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and biochemical characterization of hexokinase from the methylotrophic yeast Hansenula polymorpha.
    Karp H; Järviste A; Kriegel TM; Alamäe T
    Curr Genet; 2003 Dec; 44(5):268-76. PubMed ID: 14530868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical model of beta-cell glucose metabolism and insulin release. I. Glucokinase as glucosensor hypothesis.
    Sweet IR; Matschinsky FM
    Am J Physiol; 1995 Apr; 268(4 Pt 1):E775-88. PubMed ID: 7733279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hexokinase isoenzyme PII of Saccharomyces cerevisiae ia a protein kinase.
    Herrero P; Fernández R; Moreno F
    J Gen Microbiol; 1989 May; 135(5):1209-16. PubMed ID: 2559946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolysis of hexokinase PII is not the triggering signal of carbon catabolite derepression in Saccharomyces cerevisiae.
    Fernández MT; Herrero P; Lopez-Boado YS; Fernández R; Moreno F
    J Gen Microbiol; 1987 Sep; 133(9):2509-16. PubMed ID: 3329214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae.
    Franzusoff AJ; Cirillo VP
    J Biol Chem; 1983 Mar; 258(6):3608-14. PubMed ID: 6339489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion.
    Gamo FJ; Moreno E; Lagunas R
    Yeast; 1995 Nov; 11(14):1393-8. PubMed ID: 8585322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Obtaining and selection of hexokinases-less strains of Saccharomyces cerevisiae for production of ethanol and fructose from sucrose.
    Carvalho RS; Gomes LH; Gonzaga do P Filho L; Tavares FC
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1131-7. PubMed ID: 18008068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters.
    Maier A; Völker B; Boles E; Fuhrmann GF
    FEMS Yeast Res; 2002 Dec; 2(4):539-50. PubMed ID: 12702270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae.
    Bisson LF; Neigeborn L; Carlson M; Fraenkel DG
    J Bacteriol; 1987 Apr; 169(4):1656-62. PubMed ID: 3549699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted.
    Diderich JA; Raamsdonk LM; Kruckeberg AL; Berden JA; Van Dam K
    Appl Environ Microbiol; 2001 Apr; 67(4):1587-93. PubMed ID: 11282609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae.
    Lee WJ; Kim MD; Ryu YW; Bisson LF; Seo JH
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):186-91. PubMed ID: 12382062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae.
    Ramos S; Balbín M; Raposo M; Valle E; Pardo LA
    J Gen Microbiol; 1989 Sep; 135(9):2413-22. PubMed ID: 2697747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids.
    Zuchowska M; Jaenicke E; König H; Claus H
    Yeast; 2015 Nov; 32(11):657-69. PubMed ID: 26202678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action.
    Weisser P; Krämer R; Sahm H; Sprenger GA
    J Bacteriol; 1995 Jun; 177(11):3351-4. PubMed ID: 7768841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glucose-dependent transport of L-malate in Zygosaccharomyces bailii.
    Baranowski K; Radler F
    Antonie Van Leeuwenhoek; 1984; 50(4):329-40. PubMed ID: 6524910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the trail of an elusive flux sensor.
    Bisson LF; Kunathigan V
    Res Microbiol; 2003 Nov; 154(9):603-10. PubMed ID: 14596896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae.
    Sutherland FC; Lages F; Lucas C; Luyten K; Albertyn J; Hohmann S; Prior BA; Kilian SG
    J Bacteriol; 1997 Dec; 179(24):7790-5. PubMed ID: 9401039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.