BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32982673)

  • 1. Optimizing BCPNN Learning Rule for Memory Access.
    Yang Y; Stathis D; Jordão R; Hemani A; Lansner A
    Front Neurosci; 2020; 14():878. PubMed ID: 32982673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the BCPNN Learning Rule to a Memristor Model.
    Wang D; Xu J; Stathis D; Zhang L; Li F; Lansner A; Hemani A; Yang Y; Herman P; Zou Z
    Front Neurosci; 2021; 15():750458. PubMed ID: 34955716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing the computational footprint for real-time BCPNN learning.
    Vogginger B; Schüffny R; Lansner A; Cederström L; Partzsch J; Höppner S
    Front Neurosci; 2015; 9():2. PubMed ID: 25657618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates.
    Daruwalla K; Lipasti M
    Front Comput Neurosci; 2024; 18():1240348. PubMed ID: 38818385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traces of semantization - from episodic to semantic memory in a spiking cortical network model.
    Chrysanthidis N; Fiebig F; Lansner A; Herman P
    eNeuro; 2022 Jul; 9(4):. PubMed ID: 35803714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium Propagation for Memristor-Based Recurrent Neural Networks.
    Zoppo G; Marrone F; Corinto F
    Front Neurosci; 2020; 14():240. PubMed ID: 32265641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training memristor-based multilayer neuromorphic networks with SGD, momentum and adaptive learning rates.
    Yan Z; Chen J; Hu R; Huang T; Chen Y; Wen S
    Neural Netw; 2020 Aug; 128():142-149. PubMed ID: 32446191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.
    Kulkarni SR; Rajendran B
    Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonvolatile Memory Materials for Neuromorphic Intelligent Machines.
    Jeong DS; Hwang CS
    Adv Mater; 2018 Oct; 30(42):e1704729. PubMed ID: 29667255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays.
    Hirtzlin T; Bocquet M; Penkovsky B; Klein JO; Nowak E; Vianello E; Portal JM; Querlioz D
    Front Neurosci; 2019; 13():1383. PubMed ID: 31998059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.