BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32982989)

  • 1. Automatic Vertebral Body Segmentation Based on Deep Learning of Dixon Images for Bone Marrow Fat Fraction Quantification.
    Zhou J; Damasceno PF; Chachad R; Cheung JR; Ballatori A; Lotz JC; Lazar AA; Link TM; Fields AJ; Krug R
    Front Endocrinol (Lausanne); 2020; 11():612. PubMed ID: 32982989
    [No Abstract]   [Full Text] [Related]  

  • 2. Associations between vertebral body fat fraction and intervertebral disc biochemical composition as assessed by quantitative MRI.
    Krug R; Joseph GB; Han M; Fields A; Cheung J; Mundada M; Bailey J; Rochette A; Ballatori A; McCulloch CE; McCormick Z; O'Neill C; Link TM; Lotz J
    J Magn Reson Imaging; 2019 Oct; 50(4):1219-1226. PubMed ID: 30701594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breath-hold MR measurements of fat fraction, T1 , and T2 * of water and fat in vertebral bone marrow.
    Le Ster C; Gambarota G; Lasbleiz J; Guillin R; Decaux O; Saint-Jalmes H
    J Magn Reson Imaging; 2016 Sep; 44(3):549-55. PubMed ID: 26918280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen.
    Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H
    Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: a feasibility study.
    Burian E; Subburaj K; Mookiah MRK; Rohrmeier A; Hedderich DM; Dieckmeyer M; Diefenbach MN; Ruschke S; Rummeny EJ; Zimmer C; Kirschke JS; Karampinos DC; Baum T
    Osteoporos Int; 2019 Jun; 30(6):1265-1274. PubMed ID: 30903208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy.
    Dieckmeyer M; Ruschke S; Rohrmeier A; Syväri J; Einspieler I; Seifert-Klauss V; Schmidmayr M; Metz S; Kirschke JS; Rummeny EJ; Zimmer C; Karampinos DC; Baum T
    BMC Musculoskelet Disord; 2019 Nov; 20(1):515. PubMed ID: 31694630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study.
    Wennmann M; Neher P; Stanczyk N; Kahl KC; Kächele J; Weru V; Hielscher T; Grözinger M; Chmelik J; Zhang KS; Bauer F; Nonnenmacher T; Debic M; Sauer S; Rotkopf LT; Jauch A; Schlamp K; Mai EK; Weinhold N; Afat S; Horger M; Goldschmidt H; Schlemmer HP; Weber TF; Delorme S; Kurz FT; Maier-Hein K
    Invest Radiol; 2023 Apr; 58(4):273-282. PubMed ID: 36256790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy.
    Lee SH; Yoo HJ; Yu SM; Hong SH; Choi JY; Chae HD
    Korean J Radiol; 2019 Jan; 20(1):126-133. PubMed ID: 30627028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LSW-Net: Lightweight Deep Neural Network Based on Small-World properties for Spine MR Image Segmentation.
    He S; Li Q; Li X; Zhang M
    J Magn Reson Imaging; 2023 Dec; 58(6):1762-1776. PubMed ID: 37118994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton density fat fraction MRI of vertebral bone marrow: Accuracy, repeatability, and reproducibility among readers, field strengths, and imaging platforms.
    Schmeel FC; Vomweg T; Träber F; Gerhards A; Enkirch SJ; Faron A; Sprinkart AM; Schmeel LC; Luetkens JA; Thomas D; Kukuk GM
    J Magn Reson Imaging; 2019 Dec; 50(6):1762-1772. PubMed ID: 30980694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar muscle and vertebral bodies segmentation of chemical shift encoding-based water-fat MRI: the reference database MyoSegmenTUM spine.
    Burian E; Rohrmeier A; Schlaeger S; Dieckmeyer M; Diefenbach MN; Syväri J; Klupp E; Weidlich D; Zimmer C; Rummeny EJ; Karampinos DC; Kirschke JS; Baum T
    BMC Musculoskelet Disord; 2019 Apr; 20(1):152. PubMed ID: 30961552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of Diffusion and Perfusion in Vertebral Bone Marrow Using Intravoxel Incoherent Motion (IVIM) With Multishot, Readout-Segmented (RESOLVE) Echo-Planar Imaging.
    Lasbleiz J; Le Ster C; Guillin R; Saint-Jalmes H; Gambarota G
    J Magn Reson Imaging; 2019 Mar; 49(3):768-776. PubMed ID: 30194746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation of magnetic resonance bone marrow signal: a feasibility study.
    von Brandis E; Jenssen HB; Avenarius DFM; Bjørnerud A; Flatø B; Tomterstad AH; Lilleby V; Rosendahl K; Sakinis T; Zadig PKK; Müller LO
    Pediatr Radiol; 2022 May; 52(6):1104-1114. PubMed ID: 35107593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of vertebral endplate bone marrow lesion (Modic change) composition with water-fat MRI and relationship to patient-reported outcome measures.
    Fields AJ; Ballatori A; Han M; Bailey JF; McCormick ZL; O'Neill CW; Demir-Deviren S; Krug R; Lotz JC
    Eur Spine J; 2021 Sep; 30(9):2549-2556. PubMed ID: 33547944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerized Characterization of Spinal Structures on MRI and Clinical Significance of 3D Reconstruction of Lumbosacral Intervertebral Foramen.
    Liu Z; Su Z; Wang M; Chen T; Cui Z; Chen X; Li S; Feng Q; Pang S; Lu H
    Pain Physician; 2022 Jan; 25(1):E27-E35. PubMed ID: 35051149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI.
    Ruschke S; Pokorney A; Baum T; Eggers H; Miller JH; Hu HH; Karampinos DC
    MAGMA; 2017 Oct; 30(5):449-460. PubMed ID: 28382554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study.
    Wu T; Estrada S; van Gils R; Su R; Jaddoe VWV; Oei EHG; Klein S
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329570. PubMed ID: 37584508
    [No Abstract]   [Full Text] [Related]  

  • 18. Automated Vertebral Segmentation and Measurement of Vertebral Compression Ratio Based on Deep Learning in X-Ray Images.
    Kim DH; Jeong JG; Kim YJ; Kim KG; Jeon JY
    J Digit Imaging; 2021 Aug; 34(4):853-861. PubMed ID: 34236562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI.
    Hess M; Allaire B; Gao KT; Tibrewala R; Inamdar G; Bharadwaj U; Chin C; Pedoia V; Bouxsein M; Anderson D; Majumdar S
    Pain Med; 2023 Aug; 24(Suppl 1):S139-S148. PubMed ID: 36315069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADC Quantification of the Vertebral Bone Marrow Water Component: Removing the Confounding Effect of Residual Fat.
    Dieckmeyer M; Ruschke S; Eggers H; Kooijman H; Rummeny EJ; Kirschke JS; Baum T; Karampinos DC
    Magn Reson Med; 2017 Oct; 78(4):1432-1441. PubMed ID: 27851874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.