BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32982989)

  • 21. Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI: A Multicentric Feasibility Study.
    Wennmann M; Klein A; Bauer F; Chmelik J; Grözinger M; Uhlenbrock C; Lochner J; Nonnenmacher T; Rotkopf LT; Sauer S; Hielscher T; Götz M; Floca RO; Neher P; Bonekamp D; Hillengass J; Kleesiek J; Weinhold N; Weber TF; Goldschmidt H; Delorme S; Maier-Hein K; Schlemmer HP
    Invest Radiol; 2022 Nov; 57(11):752-763. PubMed ID: 35640004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies.
    Bhanu PK; Arvind CS; Yeow LY; Chen WX; Lim WS; Tan CH
    MAGMA; 2022 Apr; 35(2):205-220. PubMed ID: 34338926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fat-Water Swaps in Iterative Decomposition of Water and Fat With Echo Asymmetry and Least-Squares Estimation Magnetic Resonance Imaging for Postinstrumentation Spine.
    Chiang IC; Lu CH; Chung WS; Huang YF; Hsieh TJ
    J Comput Assist Tomogr; 2020; 44(6):977-983. PubMed ID: 32976262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated evaluation of hip abductor muscle quality and size in hip osteoarthritis: Localized muscle regions are strongly associated with overall muscle quality.
    Roach KE; Bird AL; Pedoia V; Majumdar S; Souza RB
    Magn Reson Imaging; 2024 Sep; 111():237-245. PubMed ID: 38636675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertebral Bone Marrow Heterogeneity Using Texture Analysis of Chemical Shift Encoding-Based MRI: Variations in Age, Sex, and Anatomical Location.
    Dieckmeyer M; Junker D; Ruschke S; Mookiah MRK; Subburaj K; Burian E; Sollmann N; Kirschke JS; Karampinos DC; Baum T
    Front Endocrinol (Lausanne); 2020; 11():555931. PubMed ID: 33178134
    [No Abstract]   [Full Text] [Related]  

  • 27. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches.
    Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D
    J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic Segmentation of Bone Selective MR Images for Visualization and Craniometry of the Cranial Vault.
    Zimmerman CE; Khandelwal P; Xie L; Lee H; Song HK; Yushkevich PA; Vossough A; Bartlett SP; Wehrli FW
    Acad Radiol; 2022 Mar; 29 Suppl 3(Suppl 3):S98-S106. PubMed ID: 33903011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry.
    Schmidt AM; Desai AD; Watkins LE; Crowder HA; Black MS; Mazzoli V; Rubin EB; Lu Q; MacKay JW; Boutin RD; Kogan F; Gold GE; Hargreaves BA; Chaudhari AS
    J Magn Reson Imaging; 2023 Apr; 57(4):1029-1039. PubMed ID: 35852498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging.
    Wu B; Cheng C; Qi Y; Zhou H; Peng H; Wan Q; Liu X; Zheng H; Zhang H; Zou C
    MAGMA; 2023 Aug; 36(4):641-649. PubMed ID: 36538249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data.
    Morris DM; Wang C; Papanastasiou G; Gray CD; Xu W; Sjöström S; Badr S; Paccou J; Semple SI; MacGillivray T; Cawthorn WP
    Comput Struct Biotechnol J; 2024 Dec; 24():89-104. PubMed ID: 38268780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the accuracy of commercial two-point and multi-echo Dixon MRI for quantification of fat in liver, paravertebral muscles, and vertebral bone marrow.
    Haueise T; Schick F; Stefan N; Machann J
    Eur J Radiol; 2024 Mar; 172():111359. PubMed ID: 38325186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep-learning-based biomarker of spinal cartilage endplate health using ultra-short echo time magnetic resonance imaging.
    Bonnheim NB; Wang L; Lazar AA; Chachad R; Zhou J; Guo X; O'Neill C; Castellanos J; Du J; Jang H; Krug R; Fields AJ
    Quant Imaging Med Surg; 2023 May; 13(5):2807-2821. PubMed ID: 37179932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association of lumbar vertebral bone marrow and paraspinal muscle fat composition with intervertebral disc degeneration: 3T quantitative MRI findings from the population-based KORA study.
    Jung M; Rospleszcz S; Löffler MT; Walter SS; Maurer E; Jungmann PM; Peters A; Nattenmüller J; Schlett CL; Bamberg F; Kiefer LS; Diallo TD
    Eur Radiol; 2023 Mar; 33(3):1501-1512. PubMed ID: 36241920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance imaging based bone marrow segmentation for quantitative calculation of pure red marrow metabolism using 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography: a novel application with significant implications for combined structure-function approach.
    Basu S; Houseni M; Bural G; Chamroonat W; Udupa J; Mishra S; Alavi A
    Mol Imaging Biol; 2007; 9(6):361-5. PubMed ID: 17899296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.
    Joshi AA; Hu HH; Leahy RM; Goran MI; Nayak KS
    J Magn Reson Imaging; 2013 Feb; 37(2):423-30. PubMed ID: 23011805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gender- and Age-Associated Differences in Bone Marrow Adipose Tissue and Bone Marrow Fat Unsaturation Throughout the Skeleton, Quantified Using Chemical Shift Encoding-Based Water-Fat MRI.
    Beekman KM; Regenboog M; Nederveen AJ; Bravenboer N; den Heijer M; Bisschop PH; Hollak CE; Akkerman EM; Maas M
    Front Endocrinol (Lausanne); 2022; 13():815835. PubMed ID: 35574007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes.
    Yoo HJ; Hong SH; Kim DH; Choi JY; Chae HD; Jeong BM; Ahn JM; Kang HS
    J Magn Reson Imaging; 2017 May; 45(5):1534-1544. PubMed ID: 27690264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Associations of gestational diabetes and proton density fat fraction of vertebral bone marrow and paraspinal musculature in premenopausal women.
    Harada S; Gersing AS; Stohldreier Y; Dietrich O; Lechner A; Seissler J; Ferrari U; Pappa E; Hesse N
    Front Endocrinol (Lausanne); 2023; 14():1303126. PubMed ID: 38292769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.