These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32983071)

  • 61. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.
    Melvin JA; Lashua LP; Kiedrowski MR; Yang G; Deslouches B; Montelaro RC; Bomberger JM
    mSphere; 2016; 1(3):. PubMed ID: 27303744
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions.
    McCaughey G; McKevitt M; Elborn JS; Tunney MM
    J Cyst Fibros; 2012 May; 11(3):163-72. PubMed ID: 22138067
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nontoxic Cationic Coumarin Polyester Coatings Prevent Pseudomonas aeruginosa Biofilm Formation.
    Chamsaz EA; Mankoci S; Barton HA; Joy A
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6704-6711. PubMed ID: 28150937
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synergistic Meropenem-Tobramycin Combination Dosage Regimens against Clinical Hypermutable Pseudomonas aeruginosa at Simulated Epithelial Lining Fluid Concentrations in a Dynamic Biofilm Model.
    Bilal H; Bergen PJ; Kim TH; Chung SE; Peleg AY; Oliver A; Nation RL; Landersdorfer CB
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31427301
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions.
    Reighard KP; Schoenfisch MH
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6506-13. PubMed ID: 26239983
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Clinical Impact of Antibiotics for the Treatment of
    Olivares E; Badel-Berchoux S; Provot C; Prévost G; Bernardi T; Jehl F
    Front Microbiol; 2019; 10():2894. PubMed ID: 31998248
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tolerance and Resistance of
    Ciofu O; Tolker-Nielsen T
    Front Microbiol; 2019; 10():913. PubMed ID: 31130925
    [No Abstract]   [Full Text] [Related]  

  • 68. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.
    Berditsch M; Jäger T; Strempel N; Schwartz T; Overhage J; Ulrich AS
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5288-96. PubMed ID: 26077259
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low Concentrations of Nitric Oxide Modulate Streptococcus pneumoniae Biofilm Metabolism and Antibiotic Tolerance.
    Allan RN; Morgan S; Brito-Mutunayagam S; Skipp P; Feelisch M; Hayes SM; Hellier W; Clarke SC; Stoodley P; Burgess A; Ismail-Koch H; Salib RJ; Webb JS; Faust SN; Hall-Stoodley L
    Antimicrob Agents Chemother; 2016 Apr; 60(4):2456-66. PubMed ID: 26856845
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against
    Wang L; Di Luca M; Tkhilaishvili T; Trampuz A; Gonzalez Moreno M
    Front Microbiol; 2019; 10():2522. PubMed ID: 31781056
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Thiostrepton Hijacks Pyoverdine Receptors To Inhibit Growth of Pseudomonas aeruginosa.
    Ranieri MRM; Chan DCK; Yaeger LN; Rudolph M; Karabelas-Pittman S; Abdo H; Chee J; Harvey H; Nguyen U; Burrows LL
    Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31262758
    [No Abstract]   [Full Text] [Related]  

  • 72. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics.
    Ren H; Wu J; Colletta A; Meyerhoff ME; Xi C
    Front Microbiol; 2016; 7():1260. PubMed ID: 27582732
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of pH on the antimicrobial susceptibility of planktonic and biofilm-grown clinical Pseudomonas aeruginosa isolates.
    Moriarty TF; Elborn JS; Tunney MM
    Br J Biomed Sci; 2007; 64(3):101-4. PubMed ID: 17910277
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients.
    Sans-Serramitjana E; Fusté E; Martínez-Garriga B; Merlos A; Pastor M; Pedraz JL; Esquisabel A; Bachiller D; Vinuesa T; Viñas M
    J Cyst Fibros; 2016 Sep; 15(5):611-8. PubMed ID: 26708265
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ultrasmall Ga-ICG nanoparticles based gallium ion/photodynamic synergistic therapy to eradicate biofilms and against drug-resistant bacterial liver abscess.
    Xie T; Qi Y; Li Y; Zhang F; Li W; Zhong D; Tang Z; Zhou M
    Bioact Mater; 2021 Nov; 6(11):3812-3823. PubMed ID: 33898879
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inactivation of Nitrite-Dependent Nitric Oxide Biosynthesis Is Responsible for Overlapped Antibiotic Resistance between Naturally and Artificially Evolved Pseudomonas aeruginosa.
    Kuang SF; Feng DY; Chen ZG; Liang ZZ; Xiang JJ; Li H; Peng XX; Zhang T
    mSystems; 2021 Oct; 6(5):e0073221. PubMed ID: 34546070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of Antimicrobial Gallium Nanoparticles Using the Hot Injection Method.
    Limantoro C; Das T; He M; Dirin D; Manos J; Kovalenko MV; Chrzanowski W
    ACS Mater Au; 2023 Jul; 3(4):310-320. PubMed ID: 38090131
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Boosting lung accumulation of gallium with inhalable nano-embedded microparticles for the treatment of bacterial pneumonia.
    Costabile G; Mitidieri E; Visaggio D; Provenzano R; Miro A; Quaglia F; d'Angelo I; Frangipani E; Sorrentino R; Visca P; d'Emmanuele di Villa Bianca R; Ungaro F
    Int J Pharm; 2022 Dec; 629():122400. PubMed ID: 36384182
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development of Biocompatible Ga
    Alamri H; Chen G; Huang SD
    Antibiotics (Basel); 2023 Oct; 12(11):. PubMed ID: 37998780
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Iron oxide nanoparticles induce
    Borcherding J; Baltrusaitis J; Chen H; Stebounova L; Wu CM; Rubasinghege G; Mudunkotuwa IA; Caraballo JC; Zabner J; Grassian VH; Comellas AP
    Environ Sci Nano; 2014 Apr; 1(2):123-132. PubMed ID: 25221673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.