BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32983113)

  • 1. The Production of Pro-angiogenic VEGF-A Isoforms by Hypoxic Human NK Cells Is Independent of Their TGF-β-Mediated Conversion to an ILC1-Like Phenotype.
    Hawke LG; Whitford MKM; Ormiston ML
    Front Immunol; 2020; 11():1903. PubMed ID: 32983113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β and IL-15 Synergize through MAPK Pathways to Drive the Conversion of Human NK Cells to an Innate Lymphoid Cell 1-like Phenotype.
    Hawke LG; Mitchell BZ; Ormiston ML
    J Immunol; 2020 Jun; 204(12):3171-3181. PubMed ID: 32332109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype.
    Lee CL; Vijayan M; Wang X; Lam KKW; Koistinen H; Seppala M; Li RHW; Ng EHY; Yeung WSB; Chiu PCN
    Hum Reprod; 2019 Apr; 34(4):689-701. PubMed ID: 30597092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of transforming growth factor-beta1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity.
    Fujiwara M; Muragaki Y; Ooshima A
    Arch Dermatol Res; 2005 Oct; 297(4):161-9. PubMed ID: 16184401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia.
    Stavri GT; Zachary IC; Baskerville PA; Martin JF; Erusalimsky JD
    Circulation; 1995 Jul; 92(1):11-4. PubMed ID: 7788904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of human NK cell lines by vascular endothelial growth factor and receptor VEGFR-1 (FLT-1).
    Chen WS; Kitson RP; Goldfarb RH
    In Vivo; 2002; 16(6):439-45. PubMed ID: 12494887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophages induce the adhesion phenotype in normal peritoneal fibroblasts.
    White JC; Jiang ZL; Diamond MP; Saed GM
    Fertil Steril; 2011 Sep; 96(3):758-763.e3. PubMed ID: 21794857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta.
    Eriksson M; Meadows SK; Wira CR; Sentman CL
    J Leukoc Biol; 2004 Sep; 76(3):667-75. PubMed ID: 15178706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha.
    Forooghian F; Das B
    Am J Ophthalmol; 2007 Nov; 144(5):761-8. PubMed ID: 17869204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions.
    Chae KS; Kang MJ; Lee JH; Ryu BK; Lee MG; Her NG; Ha TK; Han J; Kim YK; Chi SG
    Oncogene; 2011 Mar; 30(10):1213-28. PubMed ID: 21057546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming Growth Factor-beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia.
    Yu YX; Xiu YL; Chen X; Li YL
    Chin Med J (Engl); 2017 Apr; 130(8):950-956. PubMed ID: 28397725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased release of the angiogenic peptide vascular endothelial growth factor in Alzheimer's disease: recovering effect with insulin and DHEA sulfate.
    Solerte SB; Ferrari E; Cuzzoni G; Locatelli E; Giustina A; Zamboni M; Schifino N; Rondanelli M; Gazzaruso C; Fioravanti M
    Dement Geriatr Cogn Disord; 2005; 19(1):1-10. PubMed ID: 15383738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-beta stimulates vascular endothelial growth factor production by folliculostellate pituitary cells.
    Renner U; Lohrer P; Schaaf L; Feirer M; Schmitt K; Onofri C; Arzt E; Stalla GK
    Endocrinology; 2002 Oct; 143(10):3759-65. PubMed ID: 12239085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.
    Cortez VS; Ulland TK; Cervantes-Barragan L; Bando JK; Robinette ML; Wang Q; White AJ; Gilfillan S; Cella M; Colonna M
    Nat Immunol; 2017 Sep; 18(9):995-1003. PubMed ID: 28759002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high glucose and TGF-beta1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes.
    Iglesias-de la Cruz MC; Ziyadeh FN; Isono M; Kouahou M; Han DC; Kalluri R; Mundel P; Chen S
    Kidney Int; 2002 Sep; 62(3):901-13. PubMed ID: 12164872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only.
    Brogi E; Wu T; Namiki A; Isner JM
    Circulation; 1994 Aug; 90(2):649-52. PubMed ID: 8044933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration.
    Zhang J; Dunk CE; Lye SJ
    Hum Reprod; 2013 Nov; 28(11):3026-37. PubMed ID: 24001716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis.
    Breier G; Blum S; Peli J; Groot M; Wild C; Risau W; Reichmann E
    Int J Cancer; 2002 Jan; 97(2):142-8. PubMed ID: 11774256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble HLA-I-mediated secretion of TGF-beta1 by human NK cells and consequent down-regulation of anti-tumor cytolytic activity.
    Ghio M; Contini P; Negrini S; Boero S; Musso A; Poggi A
    Eur J Immunol; 2009 Dec; 39(12):3459-68. PubMed ID: 19830740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostate Cancer Peripheral Blood NK Cells Show Enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 Production and Secrete Monocyte-Recruiting and Polarizing Factors.
    Gallazzi M; Baci D; Mortara L; Bosi A; Buono G; Naselli A; Guarneri A; Dehò F; Capogrosso P; Albini A; Noonan DM; Bruno A
    Front Immunol; 2020; 11():586126. PubMed ID: 33569050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.