These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32983381)
1. Comparative Study of Different Drills for Bone Drilling: A Systematic Approach. Pazarci O; Torun Y; Ozturk A; Oztemur Z Malays Orthop J; 2020 Jul; 14(2):83-89. PubMed ID: 32983381 [TBL] [Abstract][Full Text] [Related]
2. Multi-Objective Optimization in Single-Shot Drilling of CFRP/Al Stacks Using Customized Twist Drill. Hassan MH; Abdullah J; Franz G Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269212 [TBL] [Abstract][Full Text] [Related]
3. An experimental comparative study of drilling efficiency and temperature elevation with unmodified and modified medical drills in pig tibia bone. Enokida M; Kanaya H; Uehara K; Ueki M; Nagashima H Heliyon; 2019 Aug; 5(8):e02189. PubMed ID: 31417971 [TBL] [Abstract][Full Text] [Related]
4. Reducing temperature elevation of robotic bone drilling. Feldmann A; Wandel J; Zysset P Med Eng Phys; 2016 Dec; 38(12):1495-1504. PubMed ID: 27789226 [TBL] [Abstract][Full Text] [Related]
5. Design of a self-centring drill bit for orthopaedic surgery: A systematic comparison of the drilling performance. Bai W; Pan P; Shu L; Yang Y; Zhang J; Xu J; Sugita N J Mech Behav Biomed Mater; 2021 Nov; 123():104727. PubMed ID: 34492615 [TBL] [Abstract][Full Text] [Related]
6. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Oliveira N; Alaejos-Algarra F; Mareque-Bueno J; Ferrés-Padró E; Hernández-Alfaro F Clin Oral Implants Res; 2012 Aug; 23(8):963-9. PubMed ID: 21806686 [TBL] [Abstract][Full Text] [Related]
7. Novel crescent drill design and mechanistic force modeling for thrust force reduction in bone drilling. Liu S; Wu D; Zhao J; Yang T; Sun J; Gong K Med Eng Phys; 2022 May; 103():103795. PubMed ID: 35500995 [TBL] [Abstract][Full Text] [Related]
8. Feed rate control in robotic bone drilling process. Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113 [TBL] [Abstract][Full Text] [Related]
9. Thermal damage of osteocytes during pig bone drilling: an in vivo comparative study of currently available and modified drills. Kanaya H; Enokida M; Uehara K; Ueki M; Nagashima H Arch Orthop Trauma Surg; 2019 Nov; 139(11):1599-1605. PubMed ID: 31289845 [TBL] [Abstract][Full Text] [Related]
10. Pneumatic rock drill vs. electric rotary hammer drill: Productivity, vibration, dust, and noise when drilling into concrete. Rempel D; Antonucci A; Barr A; Cooper MR; Martin B; Neitzel RL Appl Ergon; 2019 Jan; 74():31-36. PubMed ID: 30487106 [TBL] [Abstract][Full Text] [Related]
11. In Vitro Study on Bone Heating during Drilling of the Implant Site: Material, Design and Wear of the Surgical Drill. Bernabeu-Mira JC; Pellicer-Chover H; Peñarrocha-Diago M; Peñarrocha-Oltra D Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32325829 [TBL] [Abstract][Full Text] [Related]
12. Thermal effects of various drill materials during implant site preparation-Ceramic vs. stainless steel drills: A comparative in vitro study in a standardised bovine bone model. Tur D; Giannis K; Unger E; Mittlböck M; Rausch-Fan X; Strbac GD Clin Oral Implants Res; 2021 Feb; 32(2):154-166. PubMed ID: 33220104 [TBL] [Abstract][Full Text] [Related]
13. Temperature change during orthopedic drilling procedures: An experimental surgical internal fixation simulation study. Pazarcı Ö; Gündoğdu F J Orthop; 2023 Dec; 46():58-63. PubMed ID: 37942216 [TBL] [Abstract][Full Text] [Related]
14. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills. Scarano A; Piattelli A; Assenza B; Carinci F; Di Donato L; Romani GL; Merla A Clin Implant Dent Relat Res; 2011 Dec; 13(4):319-23. PubMed ID: 19681941 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical Evaluation of Temperature Rising and Applied Force in Controlled Cortical Bone Drilling: an Animal in Vitro Study. Ein-Afshar MJ; Shahrezaee M; Shahrezaee MH; Sharifzadeh SR Arch Bone Jt Surg; 2020 Sep; 8(5):605-612. PubMed ID: 33088862 [TBL] [Abstract][Full Text] [Related]
16. Design and performance analysis of low damage anti-skid crescent drills for bone drilling. Zhao J; Wu D; Wu X; Zhang Z; Wen Z; Liu S J Orthop Surg Res; 2024 Aug; 19(1):489. PubMed ID: 39153973 [TBL] [Abstract][Full Text] [Related]
17. Heat production by 3 implant drill systems after repeated drilling and sterilization. Chacon GE; Bower DL; Larsen PE; McGlumphy EA; Beck FM J Oral Maxillofac Surg; 2006 Feb; 64(2):265-9. PubMed ID: 16413899 [TBL] [Abstract][Full Text] [Related]
18. Effect of drill quality on biological damage in bone drilling. Alam K; Qamar SZ; Iqbal M; Piya S; Al-Kindi M; Qureshi A; Al-Ghaithi A; Al-Sumri B; Silberschmidt VV Sci Rep; 2023 Apr; 13(1):6234. PubMed ID: 37069203 [TBL] [Abstract][Full Text] [Related]
19. Effect of Drilling Parameters and Tool Geometry on the Thrust Force and Surface Roughness of Aerospace Grade Laminate Composites. Bolat Ç; Karakılınç U; Yalçın B; Öz Y; Yavaş Ç; Ergene B; Ercetin A; Akkoyun F Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512738 [TBL] [Abstract][Full Text] [Related]
20. Effect of process parameters on the temperature changes during robotic bone drilling. Han Y; Cai C; Lv Q; Song Y; Zhang Q Proc Inst Mech Eng H; 2022 Aug; 236(8):1129-1138. PubMed ID: 35821641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]