These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32983997)

  • 1. Targeting Cullin-RING E3 Ligases for Radiosensitization: From NEDDylation Inhibition to PROTACs.
    Zheng S; Tao W
    Front Oncol; 2020; 10():1517. PubMed ID: 32983997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cullin-RING Ligases as attractive anti-cancer targets.
    Zhao Y; Sun Y
    Curr Pharm Des; 2013; 19(18):3215-25. PubMed ID: 23151137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery].
    Yu Q; Xiong X; Sun Y
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2020 May; 49(1):1-19. PubMed ID: 32621419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs.
    Gong L; Cui D; Xiong X; Zhao Y
    Adv Exp Med Biol; 2020; 1217():317-347. PubMed ID: 31898236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells.
    Lan H; Tang Z; Jin H; Sun Y
    Sci Rep; 2016 Apr; 6():24218. PubMed ID: 27063292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of neddylation plays protective role in lipopolysaccharide-induced kidney damage through CRL-mediated NF-κB pathways.
    Fu Z; Liao W; Ma H; Wang Z; Jiang M; Feng X; Zhang W
    Am J Transl Res; 2019; 11(5):2830-2842. PubMed ID: 31217857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting cullin-RING ligases for cancer treatment: rationales, advances and therapeutic implications.
    Wu S; Yu L
    Cytotechnology; 2016 Jan; 68(1):1-8. PubMed ID: 25899169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start?
    Yu Q; Sun Y
    Drug Des Devel Ther; 2021; 15():1-8. PubMed ID: 33442232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiosensitization of Cancer Cells by Inactivation of Cullin-RING E3 Ubiquitin Ligases.
    Wei D; Morgan MA; Sun Y
    Transl Oncol; 2012 Oct; 5(5):305-12. PubMed ID: 23066438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Protein Neddylation for Cancer Therapy.
    Zhou L; Jia L
    Adv Exp Med Biol; 2020; 1217():297-315. PubMed ID: 31898235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Destabilization of CDC6 upon DNA damage is dependent on neddylation but independent of Cullin E3 ligases.
    Tan CY; Hagen T
    Int J Biochem Cell Biol; 2013 Jul; 45(7):1489-98. PubMed ID: 23597704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent insight into the role of RING-finger E3 ligases in glioma.
    Cao Y; Zhou H; Chen X; Li Y; Hu J; Zhou G; Wang L
    Biochem Soc Trans; 2021 Feb; 49(1):519-529. PubMed ID: 33544148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.
    Davis KA; Morelli M; Patton JT
    mBio; 2017 Aug; 8(4):. PubMed ID: 28851847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells.
    Wang X; Zhang W; Yan Z; Liang Y; Li L; Yu X; Feng Y; Fu S; Zhang Y; Zhao H; Yu J; Jeong LS; Guo X; Jia L
    Oncotarget; 2016 Jun; 7(25):38380-38391. PubMed ID: 27224919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the neddylation pathway in cells as a potential therapeutic approach for diseases.
    Ying J; Zhang M; Qiu X; Lu Y
    Cancer Chemother Pharmacol; 2018 May; 81(5):797-808. PubMed ID: 29450620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction.
    Sun Y
    Adv Exp Med Biol; 2020; 1217():1-8. PubMed ID: 31898218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics.
    Khan S; He Y; Zhang X; Yuan Y; Pu S; Kong Q; Zheng G; Zhou D
    Oncogene; 2020 Jun; 39(26):4909-4924. PubMed ID: 32475992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells.
    Wang Y; Luo Z; Pan Y; Wang W; Zhou X; Jeong LS; Chu Y; Liu J; Jia L
    Cancer Biol Ther; 2015; 16(3):420-9. PubMed ID: 25782162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cell senescence by targeting to Cullin-RING Ligases (CRLs) for effective cancer therapy.
    Pan Y; Xu H; Liu R; Jia L
    Int J Biochem Mol Biol; 2012; 3(3):273-81. PubMed ID: 23097743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecule PROTACs in targeted therapy: An emerging strategy to induce protein degradation.
    Xi M; Chen Y; Yang H; Xu H; Du K; Wu C; Xu Y; Deng L; Luo X; Yu L; Wu Y; Gao X; Cai T; Chen B; Shen R; Sun H
    Eur J Med Chem; 2019 Jul; 174():159-180. PubMed ID: 31035238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.