BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32984279)

  • 1. Bioengineering Novel
    Darling NJ; Mobbs CL; González-Hau AL; Freer M; Przyborski S
    Front Bioeng Biotechnol; 2020; 8():992. PubMed ID: 32984279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Improved 3D
    Macedo MH; Martínez E; Barrias CC; Sarmento B
    Front Bioeng Biotechnol; 2020; 8():524018. PubMed ID: 33042961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation.
    Li N; Wang D; Sui Z; Qi X; Ji L; Wang X; Yang L
    Tissue Eng Part C Methods; 2013 Sep; 19(9):708-19. PubMed ID: 23350801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells.
    Matsusaki M; Hikimoto D; Nishiguchi A; Kadowaki K; Ohura K; Imai T; Akashi M
    Biochem Biophys Res Commun; 2015 Feb; 457(3):363-9. PubMed ID: 25576862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Model Replicating the Intestinal Function to Evaluate Drug Permeability.
    Pereira I; Lechanteur A; Sarmento B
    Methods Mol Biol; 2018; 1817():107-113. PubMed ID: 29959707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-patterned endogenous stroma equivalent induces polarized crypt-villus architecture of human small intestinal epithelium.
    De Gregorio V; Imparato G; Urciuolo F; Netti PA
    Acta Biomater; 2018 Nov; 81():43-59. PubMed ID: 30282052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofibrous Scaffolds Support a 3D
    Patient JD; Hajiali H; Harris K; Abrahamsson B; Tannergren C; White LJ; Ghaemmaghami AM; Williams PM; Roberts CJ; Rose FRAJ
    Front Pharmacol; 2019; 10():456. PubMed ID: 31133850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold.
    Nietzer S; Baur F; Sieber S; Hansmann J; Schwarz T; Stoffer C; Häfner H; Gasser M; Waaga-Gasser AM; Walles H; Dandekar G
    Tissue Eng Part C Methods; 2016 Jul; 22(7):621-35. PubMed ID: 27137941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D.
    Anabazhagan AN; Chatterjee I; Priyamvada S; Kumar A; Tyagi S; Saksena S; Alrefai WA; Dudeja PK; Gill RK
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system.
    Seltana A; Basora N; Beaulieu JF
    Wound Repair Regen; 2010; 18(1):114-22. PubMed ID: 20082684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium.
    Dosh RH; Essa A; Jordan-Mahy N; Sammon C; Le Maitre CL
    Acta Biomater; 2017 Oct; 62():128-143. PubMed ID: 28859901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro.
    Leonard F; Collnot EM; Lehr CM
    Mol Pharm; 2010 Dec; 7(6):2103-19. PubMed ID: 20809575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure.
    Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A
    Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies.
    Pereira C; Araújo F; Barrias CC; Granja PL; Sarmento B
    Biomaterials; 2015 Jul; 56():36-45. PubMed ID: 25934277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro.
    De Gregorio V; Imparato G; Urciuolo F; Netti PA
    Biotechnol Bioeng; 2018 Apr; 115(4):1062-1075. PubMed ID: 29251351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes.
    Macedo MH; Barros AS; Martínez E; Barrias CC; Sarmento B
    J Control Release; 2022 Jan; 341():414-430. PubMed ID: 34871636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineering a novel 3D in vitro model of gastric mucosa for stomach permeability studies.
    Lourenço BN; Dos Santos T; Oliveira C; Barrias CC; Granja PL
    Acta Biomater; 2018 Dec; 82():68-78. PubMed ID: 30308252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules.
    Vllasaliu D; Falcone FH; Stolnik S; Garnett M
    Exp Cell Res; 2014 Apr; 323(1):218-231. PubMed ID: 24582861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caco-2 Cell Sheet Partially Laminated with HT29-MTX Cells as a Novel In Vitro Model of Gut Epithelium Drug Permeability.
    Cheng Y; Watanabe C; Ando Y; Kitaoka S; Egawa Y; Takashima T; Matsumoto A; Murakami M
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.