BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32984283)

  • 1. Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception.
    Bodzas A; Kodytek P; Zidek J
    Front Bioeng Biotechnol; 2020; 8():1005. PubMed ID: 32984283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images.
    Moshavash Z; Danyali H; Helfroush MS
    J Digit Imaging; 2018 Oct; 31(5):702-717. PubMed ID: 29654425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images.
    Dese K; Raj H; Ayana G; Yemane T; Adissu W; Krishnamoorthy J; Kwa T
    Clin Lymphoma Myeloma Leuk; 2021 Nov; 21(11):e903-e914. PubMed ID: 34493478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images.
    Jha KK; Dutta HS
    Comput Methods Programs Biomed; 2019 Oct; 179():104987. PubMed ID: 31443862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier.
    Amin MM; Kermani S; Talebi A; Oghli MG
    J Med Signals Sens; 2015; 5(1):49-58. PubMed ID: 25709941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology.
    Wang Q; Wang J; Zhou M; Li Q; Wang Y
    Biomed Opt Express; 2017 Jun; 8(6):3017-3028. PubMed ID: 28663923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate automatic detection of acute lymphatic leukemia using a refined simple classification.
    Al-Tahhan FE; Fares ME; Sakr AA; Aladle DA
    Microsc Res Tech; 2020 Oct; 83(10):1178-1189. PubMed ID: 32497337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of acute lymphoblastic leukemia using deep learning.
    Rehman A; Abbas N; Saba T; Rahman SIU; Mehmood Z; Kolivand H
    Microsc Res Tech; 2018 Nov; 81(11):1310-1317. PubMed ID: 30351463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic classification and segmentation of blast cells using deep transfer learning and active contours.
    Ametefe DS; Sarnin SS; Ali DM; Ametefe GD; John D; Aliu AA; Zoreno Z
    Int J Lab Hematol; 2024 May; ():. PubMed ID: 38726705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine.
    Kazemi F; Najafabadi TA; Araabi BN
    J Med Signals Sens; 2016; 6(3):183-93. PubMed ID: 27563575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks.
    Shafique S; Tehsin S
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802789. PubMed ID: 30261827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier.
    Mirmohammadi P; Ameri M; Shalbaf A
    Phys Eng Sci Med; 2021 Jun; 44(2):433-441. PubMed ID: 33751420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral blood smear image analysis: A comprehensive review.
    Mohammed EA; Mohamed MM; Far BH; Naugler C
    J Pathol Inform; 2014; 5(1):9. PubMed ID: 24843821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ResRandSVM: Hybrid Approach for Acute Lymphocytic Leukemia Classification in Blood Smear Images.
    Sulaiman A; Kaur S; Gupta S; Alshahrani H; Reshan MSA; Alyami S; Shaikh A
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37371016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LeuFeatx: Deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear.
    Rastogi P; Khanna K; Singh V
    Comput Biol Med; 2022 Mar; 142():105236. PubMed ID: 35066445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computerized detection of leukocytes in microscopic leukorrhea images.
    Zhang J; Zhong Y; Wang X; Ni G; Du X; Liu J; Liu L; Liu Y
    Med Phys; 2017 Sep; 44(9):4620-4629. PubMed ID: 28555888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.