BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32984865)

  • 1. Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI.
    Li X; Dvornek NC; Zhuang J; Ventola P; Duncan JS
    Med Image Comput Comput Assist Interv; 2018 Sep; 11072():206-214. PubMed ID: 32984865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph Neural Network for Interpreting Task-fMRI Biomarkers.
    Li X; Dvornek NC; Zhou Y; Zhuang J; Ventola P; Duncan JS
    Med Image Comput Comput Assist Interv; 2019 Oct; 11768():485-493. PubMed ID: 32984866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data.
    Almuqhim F; Saeed F
    Front Comput Neurosci; 2021; 15():654315. PubMed ID: 33897398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of Autism Spectrum Disorder Based on Functional Brain Networks with Deep Learning.
    Yin W; Mostafa S; Wu FX
    J Comput Biol; 2021 Feb; 28(2):146-165. PubMed ID: 33074746
    [No Abstract]   [Full Text] [Related]  

  • 5. Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery.
    Li X; Dvornek NC; Zhou Y; Zhuang J; Ventola P; Duncan JS
    Inf Process Med Imaging; 2019 Jun; 11492():718-730. PubMed ID: 32982121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification.
    Hu J; Cao L; Li T; Dong S; Li P
    BMC Bioinformatics; 2021 Jul; 22(1):379. PubMed ID: 34294047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.
    Hwang J; Lustig N; Jung M; Lee JH
    Heliyon; 2023 Jul; 9(7):e18086. PubMed ID: 37519689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable Learning Approaches in Resting-State Functional Connectivity Analysis: The Case of Autism Spectrum Disorder.
    Hu J; Cao L; Li T; Liao B; Dong S; Li P
    Comput Math Methods Med; 2020; 2020():1394830. PubMed ID: 32508974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks.
    Qiang N; Gao J; Dong Q; Li J; Zhang S; Liang H; Sun Y; Ge B; Liu Z; Wu Z; Liu T; Yue H; Zhao S
    Behav Brain Res; 2023 Aug; 452():114603. PubMed ID: 37516208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autistic Spectrum Disorder Detection and Structural Biomarker Identification Using Self-Attention Model and Individual-Level Morphological Covariance Brain Networks.
    Wang Z; Peng D; Shang Y; Gao J
    Front Neurosci; 2021; 15():756868. PubMed ID: 34712116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging.
    Gao K; Sun Y; Niu S; Wang L
    Autism Res; 2021 Dec; 14(12):2512-2523. PubMed ID: 34643325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning.
    Wang Y; Wang J; Wu FX; Hayrat R; Liu J
    J Neurosci Methods; 2020 Sep; 343():108840. PubMed ID: 32653384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sex-dependent computer-aided diagnosis system for autism spectrum disorder using connectivity of resting-state fMRI.
    Haghighat H; Mirzarezaee M; Araabi BN; Khadem A
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 35921809
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.
    Al-Hiyali MI; Yahya N; Faye I; Hussein AF
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Volume Image Generator and Deep Learning-Based ASD Classification.
    Ahmed MR; Zhang Y; Liu Y; Liao H
    IEEE J Biomed Health Inform; 2020 Nov; 24(11):3044-3054. PubMed ID: 32750917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet coherence-based classifier: A resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism.
    Bernas A; Aldenkamp AP; Zinger S
    Comput Methods Programs Biomed; 2018 Feb; 154():143-151. PubMed ID: 29249338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study.
    Ma H; Cao Y; Li M; Zhan L; Xie Z; Huang L; Gao Y; Jia X
    Hum Brain Mapp; 2023 Feb; 44(3):1094-1104. PubMed ID: 36346215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Convolutional Neural Network Combined With Prototype Learning Framework for Brain Functional Network Classification of Autism Spectrum Disorder.
    Liang Y; Liu B; Zhang H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2193-2202. PubMed ID: 34648452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.