BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3298542)

  • 1. Inhibitory effect of a protease inhibitor, leupeptin, on the development of influenza pneumonia, mediated by concomitant bacteria.
    Tashiro M; Klenk HD; Rott R
    J Gen Virol; 1987 Jul; 68 ( Pt 7)():2039-41. PubMed ID: 3298542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Staphylococcus protease in the development of influenza pneumonia.
    Tashiro M; Ciborowski P; Klenk HD; Pulverer G; Rott R
    Nature; 1987 Feb 5-11; 325(6104):536-7. PubMed ID: 3543690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity.
    Tashiro M; Ciborowski P; Reinacher M; Pulverer G; Klenk HD; Rott R
    Virology; 1987 Apr; 157(2):421-30. PubMed ID: 3029981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the growth of human coronavirus 229E by leupeptin.
    Appleyard G; Tisdale M
    J Gen Virol; 1985 Feb; 66 ( Pt 2)():363-6. PubMed ID: 3968542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of vitamin E on secondary bacterial infection after influenza infection in young and old mice.
    Gay R; Han SN; Marko M; Belisle S; Bronson R; Meydani SN
    Ann N Y Acad Sci; 2004 Dec; 1031():418-21. PubMed ID: 15753185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy.
    Sgarbanti R; Nencioni L; Amatore D; Coluccio P; Fraternale A; Sale P; Mammola CL; Carpino G; Gaudio E; Magnani M; Ciriolo MR; Garaci E; Palamara AT
    Antioxid Redox Signal; 2011 Aug; 15(3):593-606. PubMed ID: 21366409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease.
    Reddinger RM; Luke-Marshall NR; Hakansson AP; Campagnari AA
    mBio; 2016 Aug; 7(4):. PubMed ID: 27507829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protecting against post-influenza bacterial pneumonia by increasing phagocyte recruitment and ROS production.
    Subramaniam R; Barnes PF; Fletcher K; Boggaram V; Hillberry Z; Neuenschwander P; Shams H
    J Infect Dis; 2014 Jun; 209(11):1827-36. PubMed ID: 24367039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cleavage of influenza virus hemagglutinin as affected by serum plasmin in cell culture and in vivo].
    Zhirnov OP; Ovcharenko AV; Bukrinskaia AG
    Vopr Virusol; 1981; (6):677-87. PubMed ID: 6461136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential virus infections, bacterial superinfections, and fibrogenesis.
    Jakab GJ
    Am Rev Respir Dis; 1990 Aug; 142(2):374-9. PubMed ID: 2166456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell tropism of influenza virus mediated by hemagglutinin activation at the stage of virus entry.
    Boycott R; Klenk HD; Ohuchi M
    Virology; 1994 Sep; 203(2):313-9. PubMed ID: 8053155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of influenza virus A/WSN replication by a trypsin inhibitor, 6-amidino-2-naphthyl p-guanidinobenzoate.
    Someya A; Tanaka N; Okuyama A
    Biochem Biophys Res Commun; 1990 May; 169(1):148-52. PubMed ID: 2350338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication.
    Okumura Y; Takahashi E; Yano M; Ohuchi M; Daidoji T; Nakaya T; Böttcher E; Garten W; Klenk HD; Kido H
    J Virol; 2010 May; 84(10):5089-96. PubMed ID: 20219906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of influenza virus replication in infected mice by protease inhibitors.
    Zhirnov OP; Ovcharenko AV; Bukrinskaya AG
    J Gen Virol; 1984 Jan; 65 ( Pt 1)():191-6. PubMed ID: 6198446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of influenza virus infection by an N-thioacetylneuraminic acid acrylamide copolymer resistant to neuraminidase.
    Itoh M; Hetterich P; Isecke R; Brossmer R; Klenk HD
    Virology; 1995 Oct; 212(2):340-7. PubMed ID: 7571403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of sulfatide on influenza A virus replication].
    Suzuki T; Takahashi T; Suzuki Y
    Tanpakushitsu Kakusan Koso; 2008 Sep; 53(12 Suppl):1676-82. PubMed ID: 21089387
    [No Abstract]   [Full Text] [Related]  

  • 17. Interactions between bacteria and influenza A virus in the development of influenza pneumonia.
    Scheiblauer H; Reinacher M; Tashiro M; Rott R
    J Infect Dis; 1992 Oct; 166(4):783-91. PubMed ID: 1527412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of proteolytic activation of influenza virus hemagglutinin by specific peptidyl chloroalkyl ketones.
    Garten W; Stieneke A; Shaw E; Wikstrom P; Klenk HD
    Virology; 1989 Sep; 172(1):25-31. PubMed ID: 2773317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of influenza virus formation by a peptide that corresponds to sequences in the cytoplasmic domain of the hemagglutinin.
    Collier NC; Knox K; Schlesinger MJ
    Virology; 1991 Aug; 183(2):769-72. PubMed ID: 1853575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the cleavage activation of the influenza virus hemagglutinin by site-specific mutagenesis.
    Garten W; Vey M; Ohuchi R; Ohuchi M; Klenk HD
    Behring Inst Mitt; 1991 Jul; (89):12-22. PubMed ID: 1930091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.