BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 32985610)

  • 1. Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity.
    Khot MI; Levenstein MA; de Boer GN; Armstrong G; Maisey T; Svavarsdottir HS; Andrew H; Perry SL; Kapur N; Jayne DG
    Sci Rep; 2020 Sep; 10(1):15915. PubMed ID: 32985610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform.
    Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T
    Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.
    Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC
    Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing.
    Basu A; Dydowiczová A; Trosko JE; Bláha L; Babica P
    Toxicol Mech Methods; 2020 Oct; 30(8):590-604. PubMed ID: 32713235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device.
    LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB
    Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
    Ong LJY; Chong LH; Jin L; Singh PK; Lee PS; Yu H; Ananthanarayanan A; Leo HL; Toh YC
    Biotechnol Bioeng; 2017 Oct; 114(10):2360-2370. PubMed ID: 28542705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-through sensor array applied to cytotoxicity assessment in cell cultures for drug-testing purposes.
    Witkowska Nery E; Jastrzębska E; Żukowski K; Wróblewski W; Chudy M; Ciosek P
    Biosens Bioelectron; 2014 Jan; 51():55-61. PubMed ID: 23932980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs.
    Sung JH; Shuler ML
    Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.
    Chen YC; Yoon E
    Methods Mol Biol; 2017; 1612():281-291. PubMed ID: 28634951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®.
    Bircsak KM; DeBiasio R; Miedel M; Alsebahi A; Reddinger R; Saleh A; Shun T; Vernetti LA; Gough A
    Toxicology; 2021 Feb; 450():152667. PubMed ID: 33359578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer.
    Mehta V; Vilikkathala Sudhakaran S; Nellore V; Madduri S; Rath SN
    J Nanobiotechnology; 2024 Jun; 22(1):344. PubMed ID: 38890730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.