These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32985743)

  • 21. Advances in recovery of novel biocatalysts from metagenomes.
    Steele HL; Jaeger KE; Daniel R; Streit WR
    J Mol Microbiol Biotechnol; 2009; 16(1-2):25-37. PubMed ID: 18957860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.
    Popovic A; Tchigvintsev A; Tran H; Chernikova TN; Golyshina OV; Yakimov MM; Golyshin PN; Yakunin AF
    Adv Exp Med Biol; 2015; 883():1-20. PubMed ID: 26621459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.
    Maruthamuthu M; Jiménez DJ; Stevens P; van Elsas JD
    BMC Genomics; 2016 Jan; 17():86. PubMed ID: 26822785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions.
    Vallapurackal J; Stucki A; Liang AD; Klehr J; Dittrich PS; Ward TR
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202207328. PubMed ID: 36130864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An improved single cell ultrahigh throughput screening method based on in vitro compartmentalization.
    Ma F; Xie Y; Huang C; Feng Y; Yang G
    PLoS One; 2014; 9(2):e89785. PubMed ID: 24587033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods.
    Bunzel HA; Garrabou X; Pott M; Hilvert D
    Curr Opin Struct Biol; 2018 Feb; 48():149-156. PubMed ID: 29413955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics.
    Gielen F; Colin PY; Mair P; Hollfelder F
    Methods Mol Biol; 2018; 1685():297-309. PubMed ID: 29086317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery and functional validation of hidden soil enzymes in metagenomic libraries.
    Calderon D; Peña L; Suarez A; Villamil C; Ramirez-Rojas A; Anzola JM; García-Betancur JC; Cepeda ML; Uribe D; Del Portillo P; Mongui A
    Microbiologyopen; 2019 Apr; 8(4):e00572. PubMed ID: 30851083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Advances of metagenomics in discovering novel biocatalysts].
    Wang K; Wang S; Huang R; Liu Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Apr; 28(4):420-31. PubMed ID: 22803392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Achievements and new knowledge unraveled by metagenomic approaches.
    Simon C; Daniel R
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):265-76. PubMed ID: 19760178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high throughput screen for biomining cellulase activity from metagenomic libraries.
    Mewis K; Taupp M; Hallam SJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21307835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis?
    Almeida JM; Alnoch RC; Souza EM; Mitchell DA; Krieger N
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140320. PubMed ID: 31756433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it.
    Yun J; Ryu S
    Microb Cell Fact; 2005 Mar; 4(1):8. PubMed ID: 15790425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening.
    Dagkesamanskaya A; Langer K; Tauzin AS; Rouzeau C; Lestrade D; Potocki-Veronese G; Boitard L; Bibette J; Baudry J; Pompon D; Anton-Leberre V
    J Microbiol Methods; 2018 Apr; 147():59-65. PubMed ID: 29518436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel tools for the functional expression of metagenomic DNA.
    Troeschel SC; Drepper T; Leggewie C; Streit WR; Jaeger KE
    Methods Mol Biol; 2010; 668():117-39. PubMed ID: 20830560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity.
    Villamizar GA; Nacke H; Daniel R
    Methods Mol Biol; 2017; 1539():249-260. PubMed ID: 27900695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements.
    Berlemont R; Pipers D; Delsaute M; Angiono F; Feller G; Galleni M; Power P
    Rev Argent Microbiol; 2011; 43(2):94-103. PubMed ID: 21731970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.