These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32986426)

  • 1. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery.
    Boitreaud J; Mallet V; Oliver C; Waldispühl J
    J Chem Inf Model; 2020 Dec; 60(12):5658-5666. PubMed ID: 32986426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds.
    Sadybekov AA; Sadybekov AV; Liu Y; Iliopoulos-Tsoutsouvas C; Huang XP; Pickett J; Houser B; Patel N; Tran NK; Tong F; Zvonok N; Jain MK; Savych O; Radchenko DS; Nikas SP; Petasis NA; Moroz YS; Roth BL; Makriyannis A; Katritch V
    Nature; 2022 Jan; 601(7893):452-459. PubMed ID: 34912117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FraHMT: A Fragment-Oriented Heterogeneous Graph Molecular Generation Model for Target Proteins.
    Wang S; Liang D; Wang J; Dong K; Zhang Y; Liang H; Xu X; Song T
    J Chem Inf Model; 2024 May; 64(9):3718-3732. PubMed ID: 38644797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D3Rings: A Fast and Accurate Method for Ring System Identification and Deep Generation of Drug-Like Cyclic Compounds.
    Ma M; Zhang X; Zhou L; Han Z; Shi Y; Li J; Wu L; Xu Z; Zhu W
    J Chem Inf Model; 2024 Feb; 64(3):724-736. PubMed ID: 38206320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening.
    Chandraghatgi R; Ji HF; Rosen GL; Sokhansanj BA
    J Chem Inf Model; 2024 May; 64(9):3826-3840. PubMed ID: 38696451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Generation Model Guided by the Docking Score for Active Molecular Design.
    Yang Y; Hsieh CY; Kang Y; Hou T; Liu H; Yao X
    J Chem Inf Model; 2023 May; 63(10):2983-2991. PubMed ID: 37163364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment-based deep molecular generation using hierarchical chemical graph representation and multi-resolution graph variational autoencoder.
    Gao Z; Wang X; Blumenfeld Gaines B; Shi X; Bi J; Song M
    Mol Inform; 2023 May; 42(5):e2200215. PubMed ID: 36764926
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Matsukiyo Y; Yamanaka C; Yamanishi Y
    J Chem Inf Model; 2024 Apr; 64(7):2345-2355. PubMed ID: 37768595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application scenario-oriented molecule generation platform developed for drug discovery.
    Zheng L; Shi F; Peng C; Xu M; Fan F; Li Y; Zhang L; Du J; Wang Z; Lin Z; Sun Y; Deng C; Duan X; Wei L; Zhao C; Fang L; Zhang P; Ma S; Lai L; Yang M
    Methods; 2024 Feb; 222():112-121. PubMed ID: 38215898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Way to Incorporate Target Structural Information in Molecular Generative Models.
    Zhang W; Zhang K; Huang J
    J Chem Inf Model; 2023 Jun; 63(12):3719-3730. PubMed ID: 37318828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Generative Models for Molecular Science.
    Jørgensen PB; Schmidt MN; Winther O
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29405647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Models Should at Least Be Able to Design Molecules That Dock Well: A New Benchmark.
    Ciepliński T; Danel T; Podlewska S; Jastrzȩbski S
    J Chem Inf Model; 2023 Jun; 63(11):3238-3247. PubMed ID: 37224003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning.
    Mukaidaisi M; Vu A; Grantham K; Tchagang A; Li Y
    Front Pharmacol; 2022; 13():920747. PubMed ID: 35860028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking and Virtual Screening in Drug Discovery.
    Kontoyianni M
    Methods Mol Biol; 2017; 1647():255-266. PubMed ID: 28809009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.