These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32986440)

  • 1. Curvilinear One-Dimensional Antiferromagnets.
    Pylypovskyi OV; Kononenko DY; Yershov KV; Rößler UK; Tomilo AV; Fassbender J; van den Brink J; Makarov D; Sheka DD
    Nano Lett; 2020 Nov; 20(11):8157-8162. PubMed ID: 32986440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality.
    Volkov OM; Sheka DD; Gaididei Y; Kravchuk VP; Rößler UK; Fassbender J; Makarov D
    Sci Rep; 2018 Jan; 8(1):866. PubMed ID: 29339741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid magnonics in hybrid perovskite antiferromagnets.
    Comstock AH; Chou CT; Wang Z; Wang T; Song R; Sklenar J; Amassian A; Zhang W; Lu H; Liu L; Beard MC; Sun D
    Nat Commun; 2023 Apr; 14(1):1834. PubMed ID: 37005408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.
    Owerre SA
    J Phys Condens Matter; 2017 Jan; 29(3):03LT01. PubMed ID: 27845921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons.
    Sheka DD; Pylypovskyi OV; Volkov OM; Yershov KV; Kravchuk VP; Makarov D
    Small; 2022 Mar; 18(12):e2105219. PubMed ID: 35044074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets.
    Qaiumzadeh A; Ado IA; Duine RA; Titov M; Brataas A
    Phys Rev Lett; 2018 May; 120(19):197202. PubMed ID: 29799247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnon Spin Relaxation and Spin Hall Effect Due to the Dipolar Interaction in Antiferromagnetic Insulators.
    Shen K
    Phys Rev Lett; 2020 Feb; 124(7):077201. PubMed ID: 32142313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.
    Okuma N
    Phys Rev Lett; 2017 Sep; 119(10):107205. PubMed ID: 28949194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast spin dynamics and switching via spin transfer torque in antiferromagnets with weak ferromagnetism.
    Kim TH; Grünberg P; Han SH; Cho B
    Sci Rep; 2016 Oct; 6():35077. PubMed ID: 27713522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent antiferromagnetic spintronics.
    Han J; Cheng R; Liu L; Ohno H; Fukami S
    Nat Mater; 2023 Jun; 22(6):684-695. PubMed ID: 36941390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry-breaking interlayer Dzyaloshinskii-Moriya interactions in synthetic antiferromagnets.
    Fernández-Pacheco A; Vedmedenko E; Ummelen F; Mansell R; Petit D; Cowburn RP
    Nat Mater; 2019 Jul; 18(7):679-684. PubMed ID: 31160802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnon Landau Levels and Spin Responses in Antiferromagnets.
    Li B; Kovalev AA
    Phys Rev Lett; 2020 Dec; 125(25):257201. PubMed ID: 33416360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiferromagnetic Spin Wave Field-Effect Transistor.
    Cheng R; Daniels MW; Zhu JG; Xiao D
    Sci Rep; 2016 Apr; 6():24223. PubMed ID: 27048928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO
    Das S; Ross A; Ma XX; Becker S; Schmitt C; van Duijn F; Galindez-Ruales EF; Fuhrmann F; Syskaki MA; Ebels U; Baltz V; Barra AL; Chen HY; Jakob G; Cao SX; Sinova J; Gomonay O; Lebrun R; Kläui M
    Nat Commun; 2022 Oct; 13(1):6140. PubMed ID: 36253357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Néel-Type Antiferromagnetic Order and Coherent Magnon-Exciton Coupling in Van Der Waals VPS
    Liu C; Li Z; Hu J; Duan H; Wang C; Cai L; Feng S; Wang Y; Liu R; Hou D; Liu C; Zhang R; Zhu L; Niu Y; Zakharov AA; Sheng Z; Yan W
    Adv Mater; 2023 Jul; 35(30):e2300247. PubMed ID: 37071057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rashba Torque Driven Domain Wall Motion in Magnetic Helices.
    Pylypovskyi OV; Sheka DD; Kravchuk VP; Yershov KV; Makarov D; Gaididei Y
    Sci Rep; 2016 Mar; 6():23316. PubMed ID: 27008975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnon-driven domain-wall motion with the Dzyaloshinskii-Moriya interaction.
    Wang W; Albert M; Beg M; Bisotti MA; Chernyshenko D; Cortés-Ortuño D; Hawke I; Fangohr H
    Phys Rev Lett; 2015 Feb; 114(8):087203. PubMed ID: 25768777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction.
    Xia J; Zhang X; Yan M; Zhao W; Zhou Y
    Sci Rep; 2016 May; 6():25189. PubMed ID: 27143311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric Strain-Controlled Magnon Spin Current Transport in an Antiferromagnet.
    Zhou Y; Guo T; Qiao L; Wang Q; Zhu M; Zhang J; Liu Q; Zhao M; Wan C; He W; Bai H; Han L; Huang L; Chen R; Zhao Y; Han X; Pan F; Song C
    Nano Lett; 2022 Jun; 22(12):4646-4653. PubMed ID: 35583209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange bias driven by the Dzyaloshinskii-Moriya interaction and ferroelectric polarization at G-type antiferromagnetic perovskite interfaces.
    Dong S; Yamauchi K; Yunoki S; Yu R; Liang S; Moreo A; Liu JM; Picozzi S; Dagotto E
    Phys Rev Lett; 2009 Sep; 103(12):127201. PubMed ID: 19792455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.