These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 32986471)

  • 1. Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea.
    Adedinsewo D; Carter RE; Attia Z; Johnson P; Kashou AH; Dugan JL; Albus M; Sheele JM; Bellolio F; Friedman PA; Lopez-Jimenez F; Noseworthy PA
    Circ Arrhythm Electrophysiol; 2020 Aug; 13(8):e008437. PubMed ID: 32986471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients-The SaMi-Trop cohort.
    Brito BOF; Attia ZI; Martins LNA; Perel P; Nunes MCP; Sabino EC; Cardoso CS; Ferreira AM; Gomes PR; Luiz Pinho Ribeiro A; Lopez-Jimenez F
    PLoS Negl Trop Dis; 2021 Dec; 15(12):e0009974. PubMed ID: 34871321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction.
    Attia ZI; Kapa S; Yao X; Lopez-Jimenez F; Mohan TL; Pellikka PA; Carter RE; Shah ND; Friedman PA; Noseworthy PA
    J Cardiovasc Electrophysiol; 2019 May; 30(5):668-674. PubMed ID: 30821035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence-Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General Population.
    Kashou AH; Medina-Inojosa JR; Noseworthy PA; Rodeheffer RJ; Lopez-Jimenez F; Attia IZ; Kapa S; Scott CG; Lee AT; Friedman PA; McKie PM
    Mayo Clin Proc; 2021 Oct; 96(10):2576-2586. PubMed ID: 34120755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Left ventricular systolic dysfunction identification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients.
    Jentzer JC; Kashou AH; Attia ZI; Lopez-Jimenez F; Kapa S; Friedman PA; Noseworthy PA
    Int J Cardiol; 2021 Mar; 326():114-123. PubMed ID: 33152415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction.
    Attia IZ; Tseng AS; Benavente ED; Medina-Inojosa JR; Clark TG; Malyutina S; Kapa S; Schirmer H; Kudryavtsev AV; Noseworthy PA; Carter RE; Ryabikov A; Perel P; Friedman PA; Leon DA; Lopez-Jimenez F
    Int J Cardiol; 2021 Apr; 329():130-135. PubMed ID: 33400971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of ECG Characteristics on the Performance of an Artificial Intelligence Enabled ECG for Predicting Left Ventricular Dysfunction.
    Perez-Downes J; Fitzgerald P; Adedinsewo D; Carter RE; Noseworthy PA; Kusumoto F
    Circ Arrhythm Electrophysiol; 2021 May; 14(5):e009871. PubMed ID: 33993719
    [No Abstract]   [Full Text] [Related]  

  • 8. Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review.
    Bjerkén LV; Rønborg SN; Jensen MT; Ørting SN; Nielsen OW
    Heart Fail Rev; 2023 Mar; 28(2):419-430. PubMed ID: 36344908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence-augmented electrocardiography for left ventricular systolic dysfunction in patients undergoing high-sensitivity cardiac troponin T.
    De Michieli L; Knott JD; Attia ZI; Ola O; Mehta RA; Akula A; Hodge DO; Gulati R; Friedman PA; Jaffe AS; Sandoval Y
    Eur Heart J Acute Cardiovasc Care; 2023 Feb; 12(2):106-114. PubMed ID: 36537652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy.
    Jung YM; Kang S; Son JM; Lee HS; Han GI; Yoo AH; Kwon JM; Park CW; Park JS; Jun JK; Lee MS; Lee SM
    Am J Obstet Gynecol MFM; 2023 Dec; 5(12):101184. PubMed ID: 37863197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Value of systolic time intervals in the diagnosis of heart failure in emergency department patients with undifferentiated dyspnea.
    Trabelsi I; Msolli MA; Sekma A; Fredj N; Dridi Z; Bzeouich N; Najjar MF; Gannoun I; Mzali M; Laouiti K; Beltaief K; Grissa MH; Belguith A; Boukef R; Bouida W; Boubaker H; Nouira S;
    Int J Clin Pract; 2020 Oct; 74(10):e13572. PubMed ID: 32502312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-brain natriuretic peptide plasma levels, left ventricular dimensions and ejection fraction in acute dyspnoea.
    Shaikh K; Hanif B; Siddique AA; Shaikh MY; Khan MN
    J Coll Physicians Surg Pak; 2012 Dec; 22(12):751-5. PubMed ID: 23217478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction.
    Huang YC; Hsu YC; Liu ZY; Lin CH; Tsai R; Chen JS; Chang PC; Liu HT; Lee WC; Wo HT; Chou CC; Wang CC; Wen MS; Kuo CF
    Front Cardiovasc Med; 2023; 10():1070641. PubMed ID: 36960474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening the population for left ventricular hypertrophy and left ventricular systolic dysfunction using natriuretic peptides: results from the Dallas Heart Study.
    de Lemos JA; McGuire DK; Khera A; Das SR; Murphy SA; Omland T; Drazner MH
    Am Heart J; 2009 Apr; 157(4):746-53.e2. PubMed ID: 19332205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham heart study.
    Vasan RS; Benjamin EJ; Larson MG; Leip EP; Wang TJ; Wilson PW; Levy D
    JAMA; 2002 Sep; 288(10):1252-9. PubMed ID: 12215132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients.
    Jentzer JC; Kashou AH; Lopez-Jimenez F; Attia ZI; Kapa S; Friedman PA; Noseworthy PA
    Eur Heart J Acute Cardiovasc Care; 2021 Jun; 10(5):532-541. PubMed ID: 33620440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients.
    Kashou AH; Noseworthy PA; Lopez-Jimenez F; Attia ZI; Kapa S; Friedman PA; Jentzer JC
    Int J Cardiol; 2021 Sep; 339():54-55. PubMed ID: 34242690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Characteristics and Long-term Predictors of Persistent Left Ventricular Systolic Dysfunction in Peripartum Cardiomyopathy.
    Li W; Li H; Long Y
    Can J Cardiol; 2016 Mar; 32(3):362-8. PubMed ID: 26586094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of N-terminal pro-brain natriuretic peptide in the identification of left ventricular dysfunction in high-risk asymptomatic patients.
    Romano S; Necozione S; Guarracini L; Fratini S; Cisternino P; di Orio F; Penco M
    J Cardiovasc Med (Hagerstown); 2009 Mar; 10(3):238-44. PubMed ID: 19262210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Terminal Prohormone of Brain Natriuretic Peptide (NT-proBNP) as a Diagnostic Biomarker of Left Ventricular Systolic Dysfunction in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD).
    Andrijevic I; Milutinov S; Lozanov Crvenkovic Z; Matijasevic J; Andrijevic A; Kovacevic T; Bokan D; Zaric B
    Lung; 2018 Oct; 196(5):583-590. PubMed ID: 29951921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.