These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32986537)

  • 1. Influence of Leaf Wetness Duration and Temperature on Infection of Grape Leaves by
    Carisse O; Levasseur A; Provost C
    Plant Dis; 2020 Nov; 104(11):2817-2822. PubMed ID: 32986537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemiology of Grape Anthracnose: Factors Associated with Defoliation of Grape Leaves Infected by Elsinoë ampelina.
    Carisse O; Morissette-Thomas V
    Plant Dis; 2013 Feb; 97(2):222-230. PubMed ID: 30722317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthracnose Risk Establishment Based on Age-Related Susceptibility of Grape Leaves, Flowers, and Berries to Infection by
    Carisse O; Levasseur A; Provost C
    Plant Dis; 2021 Sep; 105(9):2380-2388. PubMed ID: 33673772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Temperature and Leaf Wetness Duration on Infection of Strawberry Leaves by Mycosphaerella fragariae.
    Carisse O; Bourgeois G; Duthie JA
    Phytopathology; 2000 Oct; 90(10):1120-5. PubMed ID: 18944475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report of Anthracnose Caused by Elsinoe ampelina on Muscadine Grapes (Vitis rotundifolia) in Northern Florida.
    Yun HK; Louime C; Lu J
    Plant Dis; 2007 Jul; 91(7):905. PubMed ID: 30780405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni.
    Morales G; Moragrega C; Montesinos E; Llorente I
    PLoS One; 2018; 13(3):e0193813. PubMed ID: 29513713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of Anthracnose Caused by Elsinoë ampelina on Grapes in Michigan.
    Schilder AMC; Smokevitch SM; Catal M; Mann WK
    Plant Dis; 2005 Sep; 89(9):1011. PubMed ID: 30786640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Insights into Grapevine Anthracnose (
    Carisse O; Vincent S; Lafond-Lapalme J; Fall ML; Van der Heyden H
    Plant Dis; 2024 Sep; 108(9):2838-2844. PubMed ID: 38736151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and Wetness-Duration Requirements for Grape Leaf and Cane Infection by Phomopsis viticola.
    Erincik O; Madden LV; Ferree DC; Ellis MA
    Plant Dis; 2003 Jul; 87(7):832-840. PubMed ID: 30812895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster Zone Leaf Removal Reduces the Rate of Anthracnose (
    Carisse O; Provost C
    Plant Dis; 2024 Mar; 108(3):608-615. PubMed ID: 37700478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Temperature, Wetness Duration, and Moisture on the Conidial Germination, Infection, and Disease Incubation Period of Glomerella cingulata.
    Wang B; Li BH; Dong XL; Wang CX; Zhang ZF
    Plant Dis; 2015 Feb; 99(2):249-256. PubMed ID: 30699567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative models for germination and infection of Pseudoperonospora cubensis in response to temperature and duration of leaf wetness.
    Arauz LF; Neufeld KN; Lloyd AL; Ojiambo PS
    Phytopathology; 2010 Sep; 100(9):959-67. PubMed ID: 20701494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling infection of spring onion by Puccinia allii in response to temperature and leaf wetness.
    Furuya H; Takanashi H; Fuji S; Nagai Y; Naito H
    Phytopathology; 2009 Aug; 99(8):951-6. PubMed ID: 19594314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A temperature and leaf wetness duration-based model for prediction of gray leaf spot of perennial ryegrass turf.
    Uddin W; Serlemitsos K; Viji G
    Phytopathology; 2003 Mar; 93(3):336-43. PubMed ID: 18944344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive Effects of Temperature and Leaf Wetness Duration on Sporangia Germination and Infection of Cucurbit Hosts by Pseudoperonospora cubensis.
    Neufeld KN; Ojiambo PS
    Plant Dis; 2012 Mar; 96(3):345-353. PubMed ID: 30727141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Environmental Factors on Severity of Citrus Scab and Melanose.
    Agostini JP; Bushong PM; Bhatia A; Timmer LW
    Plant Dis; 2003 Sep; 87(9):1102-1106. PubMed ID: 30812825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Model Defining the Relationship Between Temperature and Leaf Wetness Duration, and Infection of Watermelon by Colletotrichum orbiculare.
    Monroe JS; Santini JB; Latin R
    Plant Dis; 1997 Jul; 81(7):739-742. PubMed ID: 30861883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of wetness duration and temperature on the development of anthracnose on selected almond tissues and comparison of cultivar susceptibility.
    Diéguez-Uribeondo J; Förster H; Adaskaveg JE
    Phytopathology; 2011 Aug; 101(8):1013-20. PubMed ID: 21521000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current status and future prospects of grapevine anthracnose caused by Elsinoe ampelina: An important disease in humid grape-growing regions.
    Li Z; Dos Santos RF; Gao L; Chang P; Wang X
    Mol Plant Pathol; 2021 Aug; 22(8):899-910. PubMed ID: 34096145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bremia lactucae Infection Efficiency in Lettuce is Modulated by Temperature and Leaf Wetness Duration Under Quebec Field Conditions.
    Fall ML; Van der Heyden H; Beaulieu C; Carisse O
    Plant Dis; 2015 Jul; 99(7):1010-1019. PubMed ID: 30690977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.