These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 32986830)
41. Constitutive heterochromatin propagation contributes to the X chromosome inactivation. Shevchenko AI; Rifel NA; Zakian SM; Zakharova IS Chromosome Res; 2022 Dec; 30(4):289-307. PubMed ID: 35920963 [TBL] [Abstract][Full Text] [Related]
42. The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products. Furlan G; Gutierrez Hernandez N; Huret C; Galupa R; van Bemmel JG; Romito A; Heard E; Morey C; Rougeulle C Mol Cell; 2018 May; 70(3):462-472.e8. PubMed ID: 29706539 [TBL] [Abstract][Full Text] [Related]
43. A lifelong duty: how Xist maintains the inactive X chromosome. Jacobson EC; Pandya-Jones A; Plath K Curr Opin Genet Dev; 2022 Aug; 75():101927. PubMed ID: 35717799 [TBL] [Abstract][Full Text] [Related]
44. The tandem repeat modules of Xist lncRNA: a swiss army knife for the control of X-chromosome inactivation. Raposo AC; Casanova M; Gendrel AV; da Rocha ST Biochem Soc Trans; 2021 Dec; 49(6):2549-2560. PubMed ID: 34882219 [TBL] [Abstract][Full Text] [Related]
45. Xist nucleates local protein gradients to propagate silencing across the X chromosome. Markaki Y; Gan Chong J; Wang Y; Jacobson EC; Luong C; Tan SYX; Jachowicz JW; Strehle M; Maestrini D; Banerjee AK; Mistry BA; Dror I; Dossin F; Schöneberg J; Heard E; Guttman M; Chou T; Plath K Cell; 2021 Dec; 184(25):6174-6192.e32. PubMed ID: 34813726 [TBL] [Abstract][Full Text] [Related]
46. Early chromosome condensation by XIST builds A-repeat RNA density that facilitates gene silencing. Valledor M; Byron M; Dumas B; Carone DM; Hall LL; Lawrence JB Cell Rep; 2023 Jul; 42(7):112686. PubMed ID: 37384527 [TBL] [Abstract][Full Text] [Related]
47. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Gendrel AV; Heard E Annu Rev Cell Dev Biol; 2014; 30():561-80. PubMed ID: 25000994 [TBL] [Abstract][Full Text] [Related]
48. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Wutz A; Rasmussen TP; Jaenisch R Nat Genet; 2002 Feb; 30(2):167-74. PubMed ID: 11780141 [TBL] [Abstract][Full Text] [Related]
49. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Smola MJ; Christy TW; Inoue K; Nicholson CO; Friedersdorf M; Keene JD; Lee DM; Calabrese JM; Weeks KM Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10322-7. PubMed ID: 27578869 [TBL] [Abstract][Full Text] [Related]
50. Xist gene regulation at the onset of X inactivation. Senner CE; Brockdorff N Curr Opin Genet Dev; 2009 Apr; 19(2):122-6. PubMed ID: 19345091 [TBL] [Abstract][Full Text] [Related]
51. Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States. Loos F; Maduro C; Loda A; Lehmann J; Kremers GJ; Ten Berge D; Grootegoed JA; Gribnau J Mol Cell Biol; 2016 Nov; 36(21):2656-2667. PubMed ID: 27528619 [TBL] [Abstract][Full Text] [Related]
52. Xist Intron 1 Repression by Transcriptional-Activator-Like Effectors Designer Transcriptional Factor Improves Somatic Cell Reprogramming in Mice. Zhang J; Gao X; Yang J; Fan X; Wang W; Liang Y; Fan L; Han H; Xu X; Tang F; Bao S; Liu P; Li X Stem Cells; 2019 May; 37(5):599-608. PubMed ID: 30353613 [TBL] [Abstract][Full Text] [Related]
53. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Borensztein M; Syx L; Ancelin K; Diabangouaya P; Picard C; Liu T; Liang JB; Vassilev I; Galupa R; Servant N; Barillot E; Surani A; Chen CJ; Heard E Nat Struct Mol Biol; 2017 Mar; 24(3):226-233. PubMed ID: 28134930 [TBL] [Abstract][Full Text] [Related]
54. Systematic discovery of Xist RNA binding proteins. Chu C; Zhang QC; da Rocha ST; Flynn RA; Bharadwaj M; Calabrese JM; Magnuson T; Heard E; Chang HY Cell; 2015 Apr; 161(2):404-16. PubMed ID: 25843628 [TBL] [Abstract][Full Text] [Related]
55. Developmental Xist induction is mediated by enhanced splicing. Stork C; Li Z; Lin L; Zheng S Nucleic Acids Res; 2019 Feb; 47(3):1532-1543. PubMed ID: 30496473 [TBL] [Abstract][Full Text] [Related]
56. Multiple distinct domains of human XIST are required to coordinate gene silencing and subsequent heterochromatin formation. Dixon-McDougall T; Brown CJ Epigenetics Chromatin; 2022 Feb; 15(1):6. PubMed ID: 35120578 [TBL] [Abstract][Full Text] [Related]
57. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Sunwoo H; Colognori D; Froberg JE; Jeon Y; Lee JT Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10654-10659. PubMed ID: 28923964 [TBL] [Abstract][Full Text] [Related]
58. A new Xist allele driven by a constitutively active promoter is dominated by Xist locus environment and exhibits the parent-of-origin effects. Amakawa Y; Sakata Y; Hoki Y; Arata S; Shioda S; Fukagawa T; Sasaki H; Sado T Development; 2015 Dec; 142(24):4299-308. PubMed ID: 26511926 [TBL] [Abstract][Full Text] [Related]
59. A Pooled shRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing. Moindrot B; Cerase A; Coker H; Masui O; Grijzenhout A; Pintacuda G; Schermelleh L; Nesterova TB; Brockdorff N Cell Rep; 2015 Jul; 12(4):562-72. PubMed ID: 26190105 [TBL] [Abstract][Full Text] [Related]
60. XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome. Hall LL; Lawrence JB Cold Spring Harb Symp Quant Biol; 2010; 75():345-56. PubMed ID: 21447818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]