These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32986833)

  • 1. Contrasting Gene Decay in Subterranean Vertebrates: Insights from Cavefishes and Fossorial Mammals.
    Policarpo M; Fumey J; Lafargeas P; Naquin D; Thermes C; Naville M; Dechaud C; Volff JN; Cabau C; Klopp C; Møller PR; Bernatchez L; García-Machado E; Rétaux S; Casane D
    Mol Biol Evol; 2021 Jan; 38(2):589-605. PubMed ID: 32986833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cave-adapted evolution in the North American amblyopsid fishes inferred using phylogenomics and geometric morphometrics.
    Hart PB; Niemiller ML; Burress ED; Armbruster JW; Ludt WB; Chakrabarty P
    Evolution; 2020 May; 74(5):936-949. PubMed ID: 32187649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regressed but Not Gone: Patterns of Vision Gene Loss and Retention in Subterranean Mammals.
    Emerling CA
    Integr Comp Biol; 2018 Sep; 58(3):441-451. PubMed ID: 29697812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae).
    Niemiller ML; Fitzpatrick BM; Shah P; Schmitz L; Near TJ
    Evolution; 2013 Mar; 67(3):732-48. PubMed ID: 23461324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Genomic Survey Provides Novel Insights into Molecular Evolution of l-Aromatic Amino Acid Decarboxylase in Vertebrates.
    Li Y; Lv Y; Bian C; You X; Deng L; Shi Q
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29659490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hearing in Cavefishes.
    Soares D; Niemiller ML; Higgs DM
    Adv Exp Med Biol; 2016; 877():187-95. PubMed ID: 26515315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel genome sequence of Chinese cavefish (Triplophysa rosa) reveals pervasive relaxation of natural selection in cavefish genomes.
    Zhao Q; Shao F; Li Y; Yi SV; Peng Z
    Mol Ecol; 2022 Nov; 31(22):5831-5845. PubMed ID: 36125323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Sinocyclocheilus cavefish genome provides insights into cave adaptation.
    Yang J; Chen X; Bai J; Fang D; Qiu Y; Jiang W; Yuan H; Bian C; Lu J; He S; Pan X; Zhang Y; Wang X; You X; Wang Y; Sun Y; Mao D; Liu Y; Fan G; Zhang H; Chen X; Zhang X; Zheng L; Wang J; Cheng L; Chen J; Ruan Z; Li J; Yu H; Peng C; Ma X; Xu J; He Y; Xu Z; Xu P; Wang J; Yang H; Wang J; Whitten T; Xu X; Shi Q
    BMC Biol; 2016 Jan; 14():1. PubMed ID: 26728391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus.
    Gross JB; Borowsky R; Tabin CJ
    PLoS Genet; 2009 Jan; 5(1):e1000326. PubMed ID: 19119422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavefishes.
    Borowsky R
    Curr Biol; 2018 Jan; 28(2):R60-R64. PubMed ID: 29374443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regressive evolution in the Mexican cave tetra, Astyanax mexicanus.
    Protas M; Conrad M; Gross JB; Tabin C; Borowsky R
    Curr Biol; 2007 Mar; 17(5):452-4. PubMed ID: 17306543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Insights into the Loss of Vision in Molnár János Cave's Crustaceans.
    Pérez-Moreno JL; Balázs G; Bracken-Grissom HD
    Integr Comp Biol; 2018 Sep; 58(3):452-464. PubMed ID: 29931265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Analysis of the Only Blind Cichlid Reveals Extensive Inactivation in Eye and Pigment Formation Genes.
    Aardema ML; Stiassny MLJ; Alter SE
    Genome Biol Evol; 2020 Aug; 12(8):1392-1406. PubMed ID: 32653909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme Adaptation in Caves.
    Soares D; Niemiller ML
    Anat Rec (Hoboken); 2020 Jan; 303(1):15-23. PubMed ID: 30537183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene loss and relaxed selection of
    Drabeck DH; Wiese J; Gilbertson E; Arroyave J; Stiassny MLJ; Alter SE; Borowsky R; Hendrickson DA; Arcila D; McGaugh SE
    Proc Biol Sci; 2024 Jun; 291(2024):20232847. PubMed ID: 38864338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization.
    Calderoni L; Rota-Stabelli O; Frigato E; Panziera A; Kirchner S; Foulkes NS; Kruckenhauser L; Bertolucci C; Fuselli S
    Heredity (Edinb); 2016 Nov; 117(5):383-392. PubMed ID: 27485669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavefishes in Chronobiological Research: A Narrative Review.
    Pavlova VV; Krylov VV
    Clocks Sleep; 2023 Feb; 5(1):62-71. PubMed ID: 36810844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection Maintains the Phenotypic Divergence of Cave and Surface Fish.
    Borowsky R
    Am Nat; 2023 Jul; 202(1):55-63. PubMed ID: 37384766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive evolution of mitochondrial genomes in Triplophysa cavefishes.
    Zhang J; Shu L; Peng Z
    Gene; 2024 Jan; 893():147947. PubMed ID: 37923093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for hearing loss in amblyopsid cavefishes.
    Niemiller ML; Higgs DM; Soares D
    Biol Lett; 2013 Jun; 9(3):20130104. PubMed ID: 23536444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.