These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 329869)

  • 1. Magnetic resonance studies of the conformation of enzyme-bound adenylyl(3' leads to 5')uridine and adenosine 5'-triphosphate on RNA polymerase from Esherichia coli.
    Bean BL; Koren R; Mildvan AS
    Biochemistry; 1977 Jul; 16(15):3322-33. PubMed ID: 329869
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic resonance and kinetic studies of initiator-substrate distances on RNA polymerase from Escherichia coli.
    Stein PJ; Mildvan AS
    Biochemistry; 1978 Jun; 17(13):2675-84. PubMed ID: 354694
    [No Abstract]   [Full Text] [Related]  

  • 3. Direct coordination of nucleotide with the intrinsic metal in Escherichia coli RNA polymerase. A nuclear magnetic resonance study with cobalt-substituted enzyme.
    Chatterji D; Wu FY
    Biochemistry; 1982 Sep; 21(19):4657-64. PubMed ID: 6753923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli.
    Koren R; Mildvan S
    Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 31P NMR studies of the interaction of ATP with RNA polymerase from Escherichia coli.
    Slepneva IA; Weiner LM
    FEBS Lett; 1981 Aug; 130(2):283-6. PubMed ID: 7026291
    [No Abstract]   [Full Text] [Related]  

  • 6. Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation.
    Sloan DL; Loeb LA; Mildvan AS
    J Biol Chem; 1975 Dec; 250(23):8913-20. PubMed ID: 1104609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies on the active site of Escherichia coli RNA polymerase. 2. Geometrical relationship of the interacting substrates.
    Beal RB; Pillai RP; Chuknyisky PP; Levy A; Tarien E; Eichhorn GL
    Biochemistry; 1990 Jun; 29(25):5994-6002. PubMed ID: 2166570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rose Bengal: a spectroscopic probe for ribonucleic acid polymerase.
    Wu CW; Wu FY
    Biochemistry; 1973 Oct; 12(22):4349-55. PubMed ID: 4584324
    [No Abstract]   [Full Text] [Related]  

  • 9. Properties of ATP and UTP analogues with P-S-C-5' bonds.
    Stütz A; Scheit KH
    Eur J Biochem; 1975 Jan; 50(2):343-9. PubMed ID: 1092546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of adenine nucleotides bound to Escherichia coli adenylate kinase. 2. 31P and 13C relaxation measurements in the presence of cobalt(II) and manganese(II).
    Lin Y; Nageswara Rao BD
    Biochemistry; 2000 Apr; 39(13):3647-55. PubMed ID: 10736163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of phosphoglucomutase with nucleotide inhibitors.
    Duckworth HW; Barber BH; Sanwal BD
    J Biol Chem; 1973 Feb; 248(4):1431-5. PubMed ID: 4568817
    [No Abstract]   [Full Text] [Related]  

  • 12. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction.
    Szafrański P; Smagowicz WJ; Wierzchowski KL
    Acta Biochim Pol; 1985; 32(4):329-49. PubMed ID: 3938589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Interaction of RNA polymerase of Escherichia coli with substrate by affinity labeling and NMR with nuclear 31P].
    Slepneva IA; Vaĭner LM
    Mol Biol (Mosk); 1982; 16(4):763-70. PubMed ID: 6750360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The properties of ATP-analogs in initiation of RNA synthesis catalyzed by RNA polymerase from E coli.
    Smagowicz WJ; Scheit KH
    Nucleic Acids Res; 1981 May; 9(10):2397-410. PubMed ID: 7019855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the topography of the binding site of DNA-dependent RNA polymerase from Escherichia coli for the antibiotic rifamycin SV.
    Stender W; Scheit KH
    Eur J Biochem; 1977 Jun; 76(2):591-600. PubMed ID: 330165
    [No Abstract]   [Full Text] [Related]  

  • 18. Nuclear magnetic resonance study of the complexes of manganese(II) and fully adenylated glutamine synthetase (Escherichia coli W). Frequency, temperature, and substrate dependence of water proton relaxation rates.
    Villafranca JJ; Wedler FC
    Biochemistry; 1974 Jul; 13(16):3286-91. PubMed ID: 4152181
    [No Abstract]   [Full Text] [Related]  

  • 19. A structural model for fidelity in transcription.
    Eichhorn GL; Chuknyisky PP; Butzow JJ; Beal RB; Garland C; Janzen CP; Clark P; Tarien E
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7613-7. PubMed ID: 8052629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An RNA that multiplies indefinitely with DNA-dependent RNA polymerase: selection from a random copolymer.
    Biebricher CK; Orgel LE
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):934-8. PubMed ID: 4577140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.