BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32986929)

  • 1. Highly Efficient Solid-State Hydrolysis of Waste Polyethylene Terephthalate by Mechanochemical Milling and Vapor-Assisted Aging.
    Štrukil V
    ChemSusChem; 2021 Jan; 14(1):330-338. PubMed ID: 32986929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid.
    Yang W; Liu R; Li C; Song Y; Hu C
    Waste Manag; 2021 Nov; 135():267-274. PubMed ID: 34555688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid.
    Singh S; Sharma S; Umar A; Mehta SK; Bhatti MS; Kansal SK
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5804-5809. PubMed ID: 29458644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Pressurized Alkaline Hydrolysis for Chemical Recycling of Post-Consumer PET Waste.
    Amundarain I; Asueta A; Leivar J; Santin K; Arnaiz S
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanochemistry Milling of Waste Poly(Ethylene Terephthalate) into Metal-Organic Frameworks.
    He P; Hu Z; Dai Z; Bai H; Fan Z; Niu R; Gong J; Zhao Q; Tang T
    ChemSusChem; 2023 Jan; 16(2):e202201935. PubMed ID: 36441157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190.
    Kawai F; Furushima Y; Mochizuki N; Muraki N; Yamashita M; Iida A; Mamoto R; Tosha T; Iizuka R; Kitajima S
    AMB Express; 2022 Oct; 12(1):134. PubMed ID: 36289098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles.
    Kaabel S; Arciszewski J; Borchers TH; Therien JPD; Friščić T; Auclair K
    ChemSusChem; 2023 Jan; 16(1):e202201613. PubMed ID: 36165763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts.
    Bohre A; Jadhao PR; Tripathi K; Pant KK; Likozar B; Saha B
    ChemSusChem; 2023 Jul; 16(14):e202300142. PubMed ID: 36972065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Mechanochemical Depolymerization of PET in Ball-Mill Reactors Using DEM Simulations.
    Anglou E; Chang Y; Bradley W; Sievers C; Boukouvala F
    ACS Sustain Chem Eng; 2024 Jun; 12(24):9003-9017. PubMed ID: 38903749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressing Ultragreen, Energy-Efficient Biobased Depolymerization of Poly(ethylene terephthalate) via Microwave-Assisted Green Deep Eutectic Solvent and Enzymatic Treatment.
    Attallah OA; Azeem M; Nikolaivits E; Topakas E; Fournet MB
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Simultaneous and Selective Depolymerization of Heterogeneous Streams of Polyethylene Terephthalate and Polycarbonate: Towards Industrially Feasible Chemical Recycling.
    Rubio Arias JJ; Barnard E; Thielemans W
    ChemSusChem; 2022 Aug; 15(15):e202200625. PubMed ID: 35699250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO
    Hongkailers S; Jing Y; Wang Y; Hinchiranan N; Yan N
    ChemSusChem; 2021 Oct; 14(19):4330-4339. PubMed ID: 34390526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources.
    de Castro AM; Carniel A; Nicomedes Junior J; da Conceição Gomes A; Valoni É
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):835-844. PubMed ID: 28424881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic chemo-enzymatic hydrolysis of poly(ethylene terephthalate) from textile waste.
    Quartinello F; Vajnhandl S; Volmajer Valh J; Farmer TJ; Vončina B; Lobnik A; Herrero Acero E; Pellis A; Guebitz GM
    Microb Biotechnol; 2017 Nov; 10(6):1376-1383. PubMed ID: 28574165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-Free Mechanochemical Post-Polymerization Modification of Ionic Polymers.
    Lee JW; Park J; Lee J; Park S; Kim JG; Kim BS
    ChemSusChem; 2021 Sep; 14(18):3801-3805. PubMed ID: 34245491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps.
    Zhang ZY; Zhang FS; Yao T
    Waste Manag; 2017 Oct; 68():490-497. PubMed ID: 28743577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of reusable Ni/γ-Al
    Yan M; Yang Y; Chen F; Hantoko D; Pariatamby A; Kanchanatip E
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102560-102573. PubMed ID: 37668784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming the Limitations of Organocatalyzed Glycolysis of Poly(ethylene terephthalate) to Facilitate the Recycling of Complex Waste Under Mild Conditions.
    Olazabal I; Luna Barrios EJ; De Meester S; Jehanno C; Sardon H
    ACS Appl Polym Mater; 2024 Apr; 6(7):4226-4232. PubMed ID: 38633816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using
    Moyses DN; Teixeira DA; Waldow VA; Freire DMG; Castro AM
    3 Biotech; 2021 Oct; 11(10):435. PubMed ID: 34603913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry.
    Kubota K; Baba E; Seo T; Ishiyama T; Ito H
    Beilstein J Org Chem; 2022; 18():855-862. PubMed ID: 35957749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.