BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32986948)

  • 1. Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams.
    Abdelnaby MM; Cordova KE; Abdulazeez I; Alloush AM; Al-Maythalony BA; Mankour Y; Alhooshani K; Saleh TA; Al Hamouz OCS
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47984-47992. PubMed ID: 32986948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Optimal Zeolitic Sorbents for Sweetening of Highly Sour Natural Gas.
    Shah MS; Tsapatsis M; Siepmann JI
    Angew Chem Int Ed Engl; 2016 May; 55(20):5938-42. PubMed ID: 27087591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview on trace CO
    Khraisheh M; Mukherjee S; Kumar A; Al Momani F; Walker G; Zaworotko MJ
    J Environ Manage; 2020 Feb; 255():109874. PubMed ID: 31783210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation.
    Yi S; Ghanem B; Liu Y; Pinnau I; Koros WJ
    Sci Adv; 2019 May; 5(5):eaaw5459. PubMed ID: 31139751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M; Elfaki J; Usman A; Hussain Q; Ok YS
    Environ Res; 2019 Jul; 174():69-79. PubMed ID: 31054524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of porous materials for carbon dioxide separation and capture.
    Bae YS; Snurr RQ
    Angew Chem Int Ed Engl; 2011 Dec; 50(49):11586-96. PubMed ID: 22021216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity.
    Xu S; He J; Jin S; Tan B
    J Colloid Interface Sci; 2018 Jan; 509():457-462. PubMed ID: 28923743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detailed atomistic molecular simulation study on adsorption-based separation of CO
    Zarabadi-Poor P; Rocha-Rinza T
    RSC Adv; 2018 Apr; 8(26):14144-14151. PubMed ID: 35540755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals.
    Li P; Shen Y; Wang D; Chen Y; Zhao Y
    Molecules; 2019 May; 24(9):. PubMed ID: 31083563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.
    Xiang Z; Mercado R; Huck JM; Wang H; Guo Z; Wang W; Cao D; Haranczyk M; Smit B
    J Am Chem Soc; 2015 Oct; 137(41):13301-7. PubMed ID: 26412410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Porous Organic Polymers for Efficient Water Capture.
    Byun Y; Je SH; Talapaneni SN; Coskun A
    Chemistry; 2019 Aug; 25(44):10262-10283. PubMed ID: 31022320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-Base-Resistant Metal-Organic Framework for Size-Selective Carbon Dioxide Capture.
    Wu D; Liu C; Tian J; Jiang F; Yuan D; Chen Q; Hong M
    Inorg Chem; 2020 Sep; 59(18):13542-13550. PubMed ID: 32864962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effective synthesis of amine-tethered porous materials for carbon capture.
    Lu W; Bosch M; Yuan D; Zhou HC
    ChemSusChem; 2015 Feb; 8(3):433-8. PubMed ID: 25314657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes.
    Shah MS; Tsapatsis M; Siepmann JI
    Chem Rev; 2017 Jul; 117(14):9755-9803. PubMed ID: 28678483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture.
    Woodward RT; Stevens LA; Dawson R; Vijayaraghavan M; Hasell T; Silverwood IP; Ewing AV; Ratvijitvech T; Exley JD; Chong SY; Blanc F; Adams DJ; Kazarian SG; Snape CE; Drage TC; Cooper AI
    J Am Chem Soc; 2014 Jun; 136(25):9028-35. PubMed ID: 24874971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylene Storage and Separation Using Metal-Organic Frameworks with Open Metal Sites.
    Luna-Triguero A; Vicent-Luna JM; Madero-Castro RM; Gómez-Álvarez P; Calero S
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31499-31507. PubMed ID: 31368697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonporous Adaptive Crystals of Pillararenes.
    Jie K; Zhou Y; Li E; Huang F
    Acc Chem Res; 2018 Sep; 51(9):2064-2072. PubMed ID: 30011181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.