These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32986954)
1. Better Together: Ilmenite/Hematite Junctions for Photoelectrochemical Water Oxidation. Berardi S; Kopula Kesavan J; Amidani L; Meloni EM; Marelli M; Boscherini F; Caramori S; Pasquini L ACS Appl Mater Interfaces; 2020 Oct; 12(42):47435-47446. PubMed ID: 32986954 [TBL] [Abstract][Full Text] [Related]
2. Surface Modification of Hematite Photoanodes with CeO Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429 [TBL] [Abstract][Full Text] [Related]
3. Interface Engineering of CoFe-LDH Modified Ti: α-Fe Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609 [TBL] [Abstract][Full Text] [Related]
4. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
5. Greenlighting photoelectrochemical oxidation of water by iron oxide. Kim DW; Riha SC; DeMarco EJ; Martinson AB; Farha OK; Hupp JT ACS Nano; 2014 Dec; 8(12):12199-207. PubMed ID: 25414974 [TBL] [Abstract][Full Text] [Related]
6. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation. Xiong D; Li W; Wang X; Liu L Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842 [TBL] [Abstract][Full Text] [Related]
7. Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator? Guo Q; Zhao Q; Crespo-Otero R; Di Tommaso D; Tang J; Dimitrov SD; Titirici MM; Li X; Jorge Sobrido AB J Am Chem Soc; 2023 Jan; 145(3):1686-1695. PubMed ID: 36631927 [TBL] [Abstract][Full Text] [Related]
8. Photoelectrochemical performance and ultrafast dynamics of photogenerated electrons and holes in highly titanium-doped hematite. Paradzah AT; Maabong-Tau K; Diale M; Krüger TPJ Phys Chem Chem Phys; 2020 Dec; 22(46):27450-27457. PubMed ID: 33232411 [TBL] [Abstract][Full Text] [Related]
9. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting. Nyarige JS; Paradzah AT; Krüger TPJ; Diale M Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711 [TBL] [Abstract][Full Text] [Related]
10. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246 [TBL] [Abstract][Full Text] [Related]
11. In situ XAS study of CoB Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of r-GO/GO/α-Fe Usgodaarachchi L; Jayanetti M; Thambiliyagodage C; Liyanaarachchi H; Vigneswaran S Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614479 [TBL] [Abstract][Full Text] [Related]
13. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV). Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604 [TBL] [Abstract][Full Text] [Related]
14. How titanium and iron are integrated into hematite to enhance the photoelectrochemical water oxidation: a review. Lv X; Zhang G; Wang M; Li G; Deng J; Zhong J Phys Chem Chem Phys; 2023 Jan; 25(3):1406-1420. PubMed ID: 36594624 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation. Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155 [TBL] [Abstract][Full Text] [Related]
16. Back electron-hole recombination in hematite photoanodes for water splitting. Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340 [TBL] [Abstract][Full Text] [Related]
17. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles. Chen B; Fan W; Mao B; Shen H; Shi W Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164 [TBL] [Abstract][Full Text] [Related]
18. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy. Pei GX; Wijten JHJ; Weckhuysen BM Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes. Mesa CA; Kafizas A; Francàs L; Pendlebury SR; Pastor E; Ma Y; Le Formal F; Mayer MT; Grätzel M; Durrant JR J Am Chem Soc; 2017 Aug; 139(33):11537-11543. PubMed ID: 28735533 [TBL] [Abstract][Full Text] [Related]