These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32987236)
41. The origin of I in soil and the 129I problem. Cohen BL Health Phys; 1985 Aug; 49(2):279-85. PubMed ID: 4019198 [TBL] [Abstract][Full Text] [Related]
42. Radioiodine concentrated in a wetland. Kaplan DI; Zhang S; Roberts KA; Schwehr K; Xu C; Creeley D; Ho YF; Li HP; Yeager CM; Santschi PH J Environ Radioact; 2014 May; 131():57-61. PubMed ID: 24075117 [TBL] [Abstract][Full Text] [Related]
43. 129I/(127)I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine. Santschi PH; Schwehr KA Sci Total Environ; 2004 Apr; 321(1-3):257-71. PubMed ID: 15050400 [TBL] [Abstract][Full Text] [Related]
44. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides. Hu QH; Zavarin M; Rose TP Geochem Trans; 2008 Dec; 9():12. PubMed ID: 19077277 [TBL] [Abstract][Full Text] [Related]
45. The use of iodine as an indicator for reactor monitoring. SABO JJ; MARTIN JE; GROSSMAN RF ORINS Rep US At Energy Comm; 1960 Oct; 7593():244-9. PubMed ID: 15445284 [No Abstract] [Full Text] [Related]
46. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: coupling transport, microbial metabolism and geochemistry. Wang Y; Papenguth HW J Contam Hydrol; 2001 Feb; 47(2-4):297-309. PubMed ID: 11288584 [TBL] [Abstract][Full Text] [Related]
47. Influences of stable iodine upon the concentration of radioactive iodine by marine organisms. Hirano S; Matsuba M; Koyanagi T Radioisotopes; 1983 Aug; 32(8):353-8. PubMed ID: 6658022 [TBL] [Abstract][Full Text] [Related]
48. Investigation of Kim WS; Han S; Ahn J; Um W Environ Geochem Health; 2019 Feb; 41(1):411-425. PubMed ID: 29796958 [TBL] [Abstract][Full Text] [Related]
49. Long-term oxygen depletion from infiltrating groundwaters: model development and application to intra-glaciation and glaciation conditions. Sidborn M; Neretnieks I J Contam Hydrol; 2008 Aug; 100(1-2):72-89. PubMed ID: 18644316 [TBL] [Abstract][Full Text] [Related]
50. Uptake and distribution of organo-iodine in deep-sea corals. Prouty NG; Roark EB; Mohon LM; Chang CC J Environ Radioact; 2018 Jul; 187():122-132. PubMed ID: 29452767 [TBL] [Abstract][Full Text] [Related]
51. A review on speciation of iodine-129 in the environmental and biological samples. Hou X; Hansen V; Aldahan A; Possnert G; Lind OC; Lujaniene G Anal Chim Acta; 2009 Jan; 632(2):181-96. PubMed ID: 19110092 [TBL] [Abstract][Full Text] [Related]
52. Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. Otosaka S; Schwehr KA; Kaplan DI; Roberts KA; Zhang S; Xu C; Li HP; Ho YF; Brinkmeyer R; Yeager CM; Santschi PH Sci Total Environ; 2011 Sep; 409(19):3857-65. PubMed ID: 21641630 [TBL] [Abstract][Full Text] [Related]
53. Ability of anaerobic microorganisms to associate with iodine: 125I tracer experiments using laboratory strains and enriched microbial communities from subsurface formation water. Amachi S; Minami K; Miyasaka I; Fukunaga S Chemosphere; 2010 Apr; 79(4):349-54. PubMed ID: 20211482 [TBL] [Abstract][Full Text] [Related]
54. Determination of the flow-wetted surface in fractured media. Crawford J; Moreno L; Neretnieks I J Contam Hydrol; 2003 Mar; 61(1-4):361-9. PubMed ID: 12598117 [TBL] [Abstract][Full Text] [Related]
55. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks. Molinero J; Samper J J Contam Hydrol; 2006 Jan; 82(3-4):293-318. PubMed ID: 16337025 [TBL] [Abstract][Full Text] [Related]
56. Flow and transport in the drift shadow in a dual-continuum model. Houseworth JE; Finsterle S; Bodvarsson GS J Contam Hydrol; 2003; 62-63():133-56. PubMed ID: 12714288 [TBL] [Abstract][Full Text] [Related]
57. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock. Iraola A; Trinchero P; Voutilainen M; Gylling B; Selroos JO; Molinero J; Svensson U; Bosbach D; Deissmann G J Contam Hydrol; 2017 Dec; 207():8-16. PubMed ID: 29074267 [TBL] [Abstract][Full Text] [Related]
58. Modeling field-scale multiple tracer injection at a low-level waste disposal site in fractured rocks: effect of multiscale heterogeneity and source term uncertainty on conceptual understanding of mass transfer processes. Gwo JP; Jardine PM; Sanford WE J Contam Hydrol; 2005 Mar; 77(1-2):91-118. PubMed ID: 15722174 [TBL] [Abstract][Full Text] [Related]
59. Effect of precipitation, sorption and stable of isotope on maximum release rates of radionuclides from engineered barrier system (EBS) in deep repository. Malekifarsani A; Skachek MA J Environ Radioact; 2009 Oct; 100(10):807-14. PubMed ID: 19027996 [TBL] [Abstract][Full Text] [Related]
60. [Transport of the hormone iodine in human serum as studied with electrophoresis and radioiodine; existence of the so-called interfractions]. HORST W; ROSLER H Klin Wochenschr; 1953 Jan; 31(1-2):13-7. PubMed ID: 13062550 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]