These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32987347)

  • 1. Estimating non-hazardous industrial waste generation by sector, location, and year in the United States: A methodological framework and case example of spent foundry sand.
    Li X; Chertow M; Guo S; Johnson E; Jiang D
    Waste Manag; 2020 Dec; 118():563-572. PubMed ID: 32987347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global trends and status in waste foundry sand management research during the years 1971-2020: a systematic analysis.
    Sabour MR; Derhamjani G; Akbari M; Hatami AM
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):37312-37321. PubMed ID: 33713260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hazardous waste generation and management in China: a review.
    Duan H; Huang Q; Wang Q; Zhou B; Li J
    J Hazard Mater; 2008 Oct; 158(2-3):221-7. PubMed ID: 18353544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Industrial hazardous waste management in Turkey: current state of the field and primary challenges.
    Salihoglu G
    J Hazard Mater; 2010 May; 177(1-3):42-56. PubMed ID: 20015592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Economy-Scale Solid Waste Generation Using the United States Environmentally-Extended Input-Output Model.
    Meyer DE; Li M; Ingwersen WW
    Resour Conserv Recycl; 2020 Jun; 157():104795. PubMed ID: 32831477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying life cycle environmental benefits from the reuse of industrial materials in Pennsylvania.
    Eckelman MJ; Chertow MR
    Environ Sci Technol; 2009 Apr; 43(7):2550-6. PubMed ID: 19452915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel applications of waste foundry sand in conventional and dry-mix concretes.
    Matos PR; Marcon MF; Schankoski RA; Prudêncio LR
    J Environ Manage; 2019 Aug; 244():294-303. PubMed ID: 31128334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-usage of waste foundry sand in high-strength concrete.
    Guney Y; Sari YD; Yalcin M; Tuncan A; Donmez S
    Waste Manag; 2010; 30(8-9):1705-13. PubMed ID: 20219339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing and testing the "reuse potential" indicator for managing wastes as resources.
    Park JY; Chertow MR
    J Environ Manage; 2014 May; 137():45-53. PubMed ID: 24594758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Environmental toxicity of waste foundry sand].
    Zhang HF; Wang YJ; Wang JL; Huang TY; Xiong Y
    Huan Jing Ke Xue; 2013 Mar; 34(3):1174-80. PubMed ID: 23745431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling and reuse of industrial wastes in Taiwan.
    Wei MS; Huang KH
    Waste Manag; 2001; 21(1):93-7. PubMed ID: 11150138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial-waste management in developing countries: the case of Lebanon.
    el-Fadel M; Zeinati M; el-Jisr K; Jamali D
    J Environ Manage; 2001 Apr; 61(4):281-300. PubMed ID: 11383102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry.
    Majed Al-Salem S; Constantinou A; Leeke GA; Hafeez S; Safdar T; Karam HJ; Al-Qassimi M; Al-Dhafeeri AT; Manos G; Arena U
    Waste Manag Res; 2019 Nov; 37(11):1127-1141. PubMed ID: 31571531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of industrial hazardous waste generation in South Korea from 2008 to 2018 based on decoupling and decomposition analysis.
    Lee D; Kim J; Park HS
    Waste Manag Res; 2022 Aug; 40(8):1322-1331. PubMed ID: 34881659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological network analysis for an industrial solid waste metabolism system.
    Guan Y; Huang G; Liu L; Huang CZ; Zhai M
    Environ Pollut; 2019 Jan; 244():279-287. PubMed ID: 30342368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hazardous waste management and weight-based indicators--the case of Haifa Metropolis.
    Elimelech E; Ayalon O; Flicstein B
    J Hazard Mater; 2011 Jan; 185(2-3):626-33. PubMed ID: 20970252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resource recovery as alternative fuel and raw material from hazardous waste.
    Sadala S; Dutta S; Raghava R; Jyothsna TS; Chakradhar B; Ghosh SK
    Waste Manag Res; 2019 Nov; 37(11):1063-1076. PubMed ID: 31266435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISO 14001 adoption and industrial waste generation: the case of Swedish manufacturing firms.
    Zobel T
    Waste Manag Res; 2015 Feb; 33(2):107-13. PubMed ID: 25649400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and Chemical Properties of Waste Foundry Exhaust Sand for Use in Self-Compacting Concrete.
    Martins MAB; da Silva LRR; Ranieri MGA; Barros RM; Dos Santos VC; Gonçalves PC; Rodrigues MRB; Lintz RCC; Gachet LA; Martinez CB; Melo MLNM
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicity assessment of stabilized/solidified foundry sludge.
    Coz A; Andrés A; Irabien A
    Environ Sci Technol; 2004 Mar; 38(6):1897-900. PubMed ID: 15074704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.