BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32987366)

  • 1. EEG-based detection of mental workload level and stress: the effect of variation in each state on classification of the other.
    Bagheri M; Power SD
    J Neural Eng; 2020 Oct; 17(5):056015. PubMed ID: 32987366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Classification of Both Mental Workload and Stress Level Suitable for an Online Passive Brain-Computer Interface.
    Bagheri M; Power SD
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-based detection of modality-specific visual and auditory sensory processing.
    Massaeli F; Bagheri M; Power SD
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36749989
    [No Abstract]   [Full Text] [Related]  

  • 4. Prediction of Individual User's Dynamic Ranges of EEG Features from Resting-State EEG Data for Evaluating Their Suitability for Passive Brain-Computer Interface Applications.
    Cha HS; Han CH; Im CH
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32059543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications.
    Chu H; Cao Y; Jiang J; Yang J; Huang M; Li Q; Jiang C; Jiao X
    Biomed Eng Online; 2022 Feb; 21(1):9. PubMed ID: 35109879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raw Electroencephalogram-Based Cognitive Workload Classification Using Directed and Nondirected Functional Connectivity Analysis and Deep Learning.
    Gupta A; Daniel R; Rao A; Roy PP; Chandra S; Kim BG
    Big Data; 2023 Aug; 11(4):307-319. PubMed ID: 36848586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.
    Arico P; Borghini G; Di Flumeri G; Sciaraffa N; Colosimo A; Babiloni F
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1431-1436. PubMed ID: 28436837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based hierarchical classification of level of demand and modality of auditory and visual sensory processing.
    Massaeli F; Power SD
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38176028
    [No Abstract]   [Full Text] [Related]  

  • 10. Open multi-session and multi-task EEG cognitive Dataset for passive brain-computer Interface Applications.
    Hinss MF; Jahanpour ES; Somon B; Pluchon L; Dehais F; Roy RN
    Sci Data; 2023 Feb; 10(1):85. PubMed ID: 36765121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-based workload estimation across affective contexts.
    Mühl C; Jeunet C; Lotte F
    Front Neurosci; 2014; 8():114. PubMed ID: 24971046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.
    Aricò P; Borghini G; Di Flumeri G; Colosimo A; Pozzi S; Babiloni F
    Prog Brain Res; 2016; 228():295-328. PubMed ID: 27590973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring Mental Workload with EEG+fNIRS.
    Aghajani H; Garbey M; Omurtag A
    Front Hum Neurosci; 2017; 11():359. PubMed ID: 28769775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing EEG-based cross-day mental workload classification using periodic component of power spectrum.
    Ke Y; Wang T; He F; Liu S; Ming D
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 37995362
    [No Abstract]   [Full Text] [Related]  

  • 15. Adaptive cognitive technical systems.
    Putze F; Schultz T
    J Neurosci Methods; 2014 Aug; 234():108-15. PubMed ID: 24997342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imagined character recognition through EEG signals using deep convolutional neural network.
    Ullah S; Halim Z
    Med Biol Eng Comput; 2021 May; 59(5):1167-1183. PubMed ID: 33945075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-based discrimination of different cognitive workload levels from mental arithmetic.
    Chin ZY; Zhang X; Wang C; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1984-1987. PubMed ID: 30440788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of mental workload across cognitive tasks using a passive brain-computer interface based on mean negative theta-band amplitudes.
    Gallegos Ayala GI; Haslacher D; Krol LR; Soekadar SR; Zander TO
    Front Neuroergon; 2023; 4():1233722. PubMed ID: 38234499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.