These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 32987542)

  • 1. Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting.
    Sun GX; Dai BX
    Math Biosci Eng; 2020 May; 17(4):3520-3552. PubMed ID: 32987542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect.
    Shen Z; Wei J
    Math Biosci Eng; 2018 Jun; 15(3):693-715. PubMed ID: 30380326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters.
    Zhang X; Zhao H
    J Theor Biol; 2014 Dec; 363():390-403. PubMed ID: 25172773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and Hopf bifurcation of an intraguild prey-predator fishery model with two delays and Michaelis-Menten type predator harvest.
    Hou M; Zhang T; Yuan S
    Math Biosci Eng; 2024 Apr; 21(4):5687-5711. PubMed ID: 38872554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism.
    Ma T; Meng X
    Math Biosci Eng; 2022 Apr; 19(6):6040-6071. PubMed ID: 35603390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical analysis of a delayed diffusive predator-prey model with schooling behaviour and Allee effect.
    Meng XY; Wang JG
    J Biol Dyn; 2020 Dec; 14(1):826-848. PubMed ID: 33225865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics analysis of a delayed reaction-diffusion predator-prey system with non-continuous threshold harvesting.
    Zhang X; Zhao H
    Math Biosci; 2017 Jul; 289():130-141. PubMed ID: 28529143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting.
    Meng XY; Wu YQ
    Math Biosci Eng; 2019 Mar; 16(4):2668-2696. PubMed ID: 31137232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting.
    Liu W; Jiang Y
    J Theor Biol; 2018 Feb; 438():116-132. PubMed ID: 29129548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge.
    Chang X; Wei J
    Math Biosci Eng; 2013 Aug; 10(4):979-96. PubMed ID: 23906199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turing-Hopf Bifurcation Analysis in a Diffusive Ratio-Dependent Predator-Prey Model with Allee Effect and Predator Harvesting.
    Chen M; Xu Y; Zhao J; Wei X
    Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38248144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species.
    Meng XY; Qin NN; Huo HF
    J Biol Dyn; 2018 Dec; 12(1):342-374. PubMed ID: 29616595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey.
    Banerjee J; Sasmal SK; Layek RK
    Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillations for a delayed predator-prey model with Hassell-Varley-type functional response.
    Xu C; Li P
    C R Biol; 2015 Apr; 338(4):227-40. PubMed ID: 25836016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of additional food in a delayed predator-prey model.
    Sahoo B; Poria S
    Math Biosci; 2015 Mar; 261():62-73. PubMed ID: 25550287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay.
    Manna K; Banerjee M
    Math Biosci Eng; 2019 Mar; 16(4):2411-2446. PubMed ID: 31137220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifurcation structure of nonconstant positive steady states for a diffusive predator-prey model.
    Tong DF; Cai YL; Wang BX; Wang WM
    Math Biosci Eng; 2019 May; 16(5):3988-4006. PubMed ID: 31499646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model.
    Liu B; Wu R; Chen L
    Chaos; 2018 Nov; 28(11):113118. PubMed ID: 30501205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global hopf bifurcation on two-delays leslie-gower predator-prey system with a prey refuge.
    Liu Q; Lin Y; Cao J
    Comput Math Methods Med; 2014; 2014():619132. PubMed ID: 24803953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the fear effect in the predator-prey dynamics with an age structure in the predators.
    Xu W; Jiang P; Shu H; Tong S
    Math Biosci Eng; 2023 May; 20(7):12625-12648. PubMed ID: 37501458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.