These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32987546)
1. Global asymptotic behavior for mixed vaccination strategy in a delayed epidemic model with interim-immune. Liu SY; Shen MW; Bi YJ Math Biosci Eng; 2020 May; 17(4):3601-3617. PubMed ID: 32987546 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of cholera epidemics with impulsive vaccination and disinfection. Sisodiya OS; Misra OP; Dhar J Math Biosci; 2018 Apr; 298():46-57. PubMed ID: 29425779 [TBL] [Abstract][Full Text] [Related]
3. A state dependent pulse control strategy for a SIRS epidemic system. Nie LF; Teng ZD; Guo BZ Bull Math Biol; 2013 Oct; 75(10):1697-715. PubMed ID: 23812914 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of vaccination in a time-delayed epidemic model with awareness. Agaba GO; Kyrychko YN; Blyuss KB Math Biosci; 2017 Dec; 294():92-99. PubMed ID: 28966060 [TBL] [Abstract][Full Text] [Related]
5. Optimal control of vaccination dynamics during an influenza epidemic. Jaberi-Douraki M; Moghadas SM Math Biosci Eng; 2014 Oct; 11(5):1045-63. PubMed ID: 25347806 [TBL] [Abstract][Full Text] [Related]
6. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Manyombe ML; Mbang J; Lubuma J; Tsanou B Math Biosci Eng; 2016 Aug; 13(4):813-840. PubMed ID: 27775386 [TBL] [Abstract][Full Text] [Related]
7. Almost periodic solutions for a SVIR epidemic model with relapse. Xing Y; Li HX Math Biosci Eng; 2021 Aug; 18(6):7191-7217. PubMed ID: 34814245 [TBL] [Abstract][Full Text] [Related]
8. Prevention of infectious diseases by public vaccination and individual protection. Peng XL; Xu XJ; Small M; Fu X; Jin Z J Math Biol; 2016 Dec; 73(6-7):1561-1594. PubMed ID: 27084186 [TBL] [Abstract][Full Text] [Related]
9. Stability properties of pulse vaccination strategy in SEIR epidemic model. d'Onofrio A Math Biosci; 2002; 179(1):57-72. PubMed ID: 12047921 [TBL] [Abstract][Full Text] [Related]
10. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Gao S; Chen L; Nieto JJ; Torres A Vaccine; 2006 Aug; 24(35-36):6037-45. PubMed ID: 16806597 [TBL] [Abstract][Full Text] [Related]
11. Analysis of an SIR epidemic model with pulse vaccination and distributed time delay. Gao S; Teng Z; Nieto JJ; Torres A J Biomed Biotechnol; 2007; 2007():64870. PubMed ID: 18322563 [TBL] [Abstract][Full Text] [Related]
12. State-Dependent Pulse Vaccination and Therapeutic Strategy in an SI Epidemic Model with Nonlinear Incidence Rate. Liu K; Zhang T; Chen L Comput Math Methods Med; 2019; 2019():3859815. PubMed ID: 30881479 [TBL] [Abstract][Full Text] [Related]
13. Threshold dynamics of a time-delayed SEIRS model with pulse vaccination. Bai Z Math Biosci; 2015 Nov; 269():178-85. PubMed ID: 26408988 [TBL] [Abstract][Full Text] [Related]
14. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Tanner MW; Sattenspiel L; Ntaimo L Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149 [TBL] [Abstract][Full Text] [Related]
15. Mixed vaccination strategy for the control of tuberculosis: A case study in China. Liu S; Li Y; Bi Y; Huang Q Math Biosci Eng; 2017 Jun; 14(3):695-708. PubMed ID: 28092959 [TBL] [Abstract][Full Text] [Related]
16. Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control. Liu S; Bi Y; Liu Y Theor Biol Med Model; 2020 May; 17(1):6. PubMed ID: 32362279 [TBL] [Abstract][Full Text] [Related]
17. An impulsive delayed SEIRS epidemic model with saturation incidence. Zhang T; Teng Z J Biol Dyn; 2008 Jan; 2(1):64-84. PubMed ID: 22876846 [TBL] [Abstract][Full Text] [Related]
18. Global dynamics of an SIRS epidemic model with saturation incidence. Hao L; Jiang G; Liu S; Ling L Biosystems; 2013 Oct; 114(1):56-63. PubMed ID: 23891842 [TBL] [Abstract][Full Text] [Related]
19. Dynamical analysis of an age-structured multi-group SIVS epidemic model. Yang J; Xu R; Luo X Math Biosci Eng; 2019 Jan; 16(2):636-666. PubMed ID: 30861660 [TBL] [Abstract][Full Text] [Related]