These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32987665)

  • 1. Tailoring Charged Nanofiltration Membrane Based on Non-Aromatic Tris(3-aminopropyl)amine for Effective Water Softening.
    Jin P; Robeyn M; Zheng J; Yuan S; Van der Bruggen B
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32987665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance.
    Jiang Z; Miao J; He Y; Hong X; Tu K; Wang X; Chen S; Yang H; Zhang L; Zhang R
    RSC Adv; 2019 Nov; 9(64):37546-37555. PubMed ID: 35542300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-layer Janus charged nanofiltration membranes constructed by sequential electrospray polymerization for efficient water softening.
    Ma Z; Ren LF; Ying D; Jia J; Shao J
    Chemosphere; 2023 Jan; 310():136929. PubMed ID: 36273607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of polyamide TFC nanofiltration membrane for improving separation and antifouling properties.
    Liu LF; Huang X; Zhang X; Li K; Ji YL; Yu CY; Gao CJ
    RSC Adv; 2018 Apr; 8(27):15102-15110. PubMed ID: 35541356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Polyamide Membrane with Decreased Porosity Designed for Outstanding Water-Softening Performance and Superior Antifouling Properties.
    Yuan B; Jiang C; Li P; Sun H; Li P; Yuan T; Sun H; Niu QJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43057-43067. PubMed ID: 30418742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine.
    Fan L; Zhang Q; Yang Z; Zhang R; Liu YN; He M; Jiang Z; Su Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13577-13586. PubMed ID: 28380294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multirole Regulations of Interfacial Polymerization Using Poly(acrylic acid) for Nanofiltration Membrane Development.
    Ding J; Wu H; Wu P
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53120-53130. PubMed ID: 34714059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a Novel Nanofiltration Membrane with Enhanced Performance via Interfacial Polymerization through the Incorporation of a New Zwitterionic Diamine Monomer.
    Li SL; Shan X; Zhao Y; Hu Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42846-42855. PubMed ID: 31633329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Polyphenol Pyrogallol and Polyamine-Based Co-Deposition for High-Efficiency Nanofiltration Membrane Preparation towards Inorganic Salt Removal.
    Wu J; Li Z; Zhou Q; Chigwidi M; Jiao Y; Xu Y; Lin H
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of positively charged composite nanofiltration membranes by quaternization crosslinking for precise molecular and ionic separations.
    Fang C; Sun J; Zhang B; Sun Y; Zhu L; Matsuyama H
    J Colloid Interface Sci; 2018 Dec; 531():168-180. PubMed ID: 30031259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes.
    Zhao FY; Ji YL; Weng XD; Mi YF; Ye CC; An QF; Gao CJ
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6693-700. PubMed ID: 26901491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface-Confined Channels Facilitating Water Transport through an IL-Enriched Nanocomposite Membrane.
    Bai J; Gong L; Xiao L; Lai W; Zhang Y; Fan H; Shan L; Luo S
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53390-53397. PubMed ID: 36394911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Step Construction of the Positively/Negatively Charged Ultrathin Janus Nanofiltration Membrane for the Separation of Li
    Guo C; Qian Y; Liu P; Zhang Q; Zeng X; Xu Z; Zhang S; Li N; Qian X; Yu F
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4814-4825. PubMed ID: 36633649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of a novel positively charged composite hollow fiber nanofiltration membrane based on chitosan lactate.
    He Y; Miao J; Chen S; Zhang R; Zhang L; Tang H; Yang H
    RSC Adv; 2019 Jan; 9(8):4361-4369. PubMed ID: 35520154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance.
    Yun T; Kwak SY
    J Environ Manage; 2020 Apr; 260():110001. PubMed ID: 31941640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Chemically-Tailored Copolymer Membranes with Tunable Ion Transport Properties.
    Qu S; Dilenschneider T; Phillip WA
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19746-54. PubMed ID: 26287654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance.
    Xu Y; Guo D; Li T; Xiao Y; Shen L; Li R; Jiao Y; Lin H
    J Colloid Interface Sci; 2020 Apr; 565():23-34. PubMed ID: 31931296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An acid-stable positively charged polysulfonamide nanofiltration membrane prepared by interfacial polymerization of polyallylamine and 1,3-benzenedisulfonyl chloride for water treatment.
    Wang H; Wei Z; Wang H; Jiang H; Li Y; Wu C
    RSC Adv; 2019 Jan; 9(4):2042-2054. PubMed ID: 35516149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs).
    Xue SM; Xu ZL; Tang YJ; Ji CH
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19135-44. PubMed ID: 27387192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of Amine Groups Cooped up in Polyamide Nanofiltration Membranes to Achieve High Rejection of Micropollutants and High Permeance of Divalent Cations.
    Gao Y; Wang K; Wang XM; Huang X
    Environ Sci Technol; 2022 Aug; 56(15):10954-10962. PubMed ID: 35819002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.