These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32987912)

  • 1. Influence of SERS Activity of SnSe
    Tian Y; Wei H; Xu Y; Sun Q; Man B; Liu M
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32987912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Raman Spectroscopy of Two-Dimensional Tin Diselenide Nanoplates.
    Liu M; Shi Y; Zhang G; Zhang Y; Wu M; Ren J; Man B
    Appl Spectrosc; 2018 Nov; 72(11):1613-1620. PubMed ID: 30063384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe
    Chen C; Zhang W; Duan P; Liu W; Shafi M; Hu X; Zhang C; Zhang C; Man B; Liu M
    Opt Express; 2022 Oct; 30(21):37795-37814. PubMed ID: 36258361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection.
    Xu G; Dong R; Gu D; Tian H; Xiong L; Wang Z; Wang W; Shao Y; Li W; Li G; Zheng X; Yu Y; Feng Y; Dong Y; Zhong G; Zhang B; Li W; Wei L; Yang C; Chen M
    J Phys Chem Lett; 2022 Feb; 13(6):1453-1463. PubMed ID: 35129342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS.
    Song G; Gong W; Cong S; Zhao Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5505-5511. PubMed ID: 33258164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed valence Ce-doped TiO
    Li J; Zhang H; Yu D; Wang W; Song W; Yang L; Jiang X; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121643. PubMed ID: 35863183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved SERS activity of non-stoichiometric copper sulfide nanostructures related to charge-transfer resonance.
    Chen M; Li K; Luo Y; Shi J; Weng C; Gao L; Duan G
    Phys Chem Chem Phys; 2020 Mar; 22(9):5145-5153. PubMed ID: 32073003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Amorphous TiO
    Wang X; Shi W; Wang S; Zhao H; Lin J; Yang Z; Chen M; Guo L
    J Am Chem Soc; 2019 Apr; 141(14):5856-5862. PubMed ID: 30895783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved surface-enhanced Raman scattering (SERS) sensitivity to molybdenum oxide nanosheets via the lightning rod effect with application in detecting methylene blue.
    Ren P; Zhou W; Ren X; Zhang X; Sun B; Chen Y; Zheng Q; Li J; Zhang W
    Nanotechnology; 2020 May; 31(22):224002. PubMed ID: 32050177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials.
    Wang X; Guo L
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4231-4239. PubMed ID: 31733023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities.
    Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect.
    Yang L; Peng Y; Yang Y; Liu J; Huang H; Yu B; Zhao J; Lu Y; Huang Z; Li Z; Lombardi JR
    Adv Sci (Weinh); 2019 Jun; 6(12):1900310. PubMed ID: 31380169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage.
    Li P; Wang X; Zhang X; Zhang L; Yang X; Zhao B
    Front Chem; 2019; 7():144. PubMed ID: 30941346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-induced SERS enhancement in a MoS
    Sun H; Yao M; Song Y; Zhu L; Dong J; Liu R; Li P; Zhao B; Liu B
    Nanoscale; 2019 Nov; 11(44):21493-21501. PubMed ID: 31686063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor SERS of diamond.
    Gao Y; Gao N; Li H; Yuan X; Wang Q; Cheng S; Liu J
    Nanoscale; 2018 Aug; 10(33):15788-15792. PubMed ID: 30095838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur doped MoO
    Zhou X; Zhao X; Gu S; Xie F; Wang X; Tang Z
    Anal Methods; 2021 Jun; 13(24):2679-2687. PubMed ID: 34036972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic conduction induced by direct anion site doping in layered SnSe2.
    Kim SI; Hwang S; Kim SY; Lee WJ; Jung DW; Moon KS; Park HJ; Cho YJ; Cho YH; Kim JH; Yun DJ; Lee KH; Han IT; Lee K; Sohn Y
    Sci Rep; 2016 Jan; 6():19733. PubMed ID: 26792630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets.
    Lin J; Yu J; Akakuru OU; Wang X; Yuan B; Chen T; Guo L; Wu A
    Chem Sci; 2020 Aug; 11(35):9414-9420. PubMed ID: 34094207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SnSe
    Liu JS; Li XH; Guo YX; Qyyum A; Shi ZJ; Feng TC; Zhang Y; Jiang CX; Liu XF
    Small; 2019 Sep; 15(38):e1902811. PubMed ID: 31373758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.