These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32988035)

  • 1. Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks.
    Yang Y; Hobbs RG; Keathley PD; Berggren KK
    Opt Express; 2020 Sep; 28(19):27405-27414. PubMed ID: 32988035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?
    Schmidt FP; Losquin A; Hofer F; Hohenau A; Krenn JR; Kociak M
    ACS Photonics; 2018 Mar; 5(3):861-866. PubMed ID: 29607350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.
    Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J
    Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linewidth narrowing of aluminum breathing plasmon resonances in Bragg grating decorated nanodisks.
    Zhao X; Du C; Leng R; Li L; Luo W; Wu W; Xiang Y; Ren M; Zhang X; Cai W; Xu J
    Nanoscale Adv; 2021 Jul; 3(14):4286-4291. PubMed ID: 36132839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal dispersion of surface plasmons in flat nanostructures.
    Schmidt FP; Ditlbacher H; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Nat Commun; 2014 Apr; 5():3604. PubMed ID: 24717682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion relations for coupled surface plasmon-polariton modes excited in multilayer structures.
    Saito H; Namura K; Suzuki M; Kurata H
    Microscopy (Oxf); 2014 Feb; 63(1):85-93. PubMed ID: 24285862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method.
    Yasuhara A; Shibata M; Yamamoto W; Machfuudzoh I; Yanagimoto S; Sannomiya T
    Microscopy (Oxf); 2024 May; ():. PubMed ID: 38702889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of substrates for the visibility of "dark" plasmonic modes.
    Fiedler S; Raza S; Ai R; Wang J; Busch K; Stenger N; Mortensen NA; Wolff C
    Opt Express; 2020 Apr; 28(9):13938-13948. PubMed ID: 32403859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon modes of a silver thin film taper probed with STEM-EELS.
    Schmidt FP; Ditlbacher H; Trügler A; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Opt Lett; 2015 Dec; 40(23):5670-3. PubMed ID: 26625078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Dispersion Relations and Intensity Enhancement of Metal-Insulator-Metal Nanodisks.
    Schaffernak G; Krug MK; Belitsch M; Gašparić M; Ditlbacher H; Hohenester U; Krenn JR; Hohenau A
    ACS Photonics; 2018 Dec; 5(12):4823-4827. PubMed ID: 30591924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.
    Takeuchi K; Yamamoto N
    Opt Express; 2011 Jun; 19(13):12365-74. PubMed ID: 21716474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon resonances in aluminum nanodisks.
    Langhammer C; Schwind M; Kasemo B; Zorić I
    Nano Lett; 2008 May; 8(5):1461-71. PubMed ID: 18393471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
    Zhang S; Li GC; Chen Y; Zhu X; Liu SD; Lei DY; Duan H
    ACS Nano; 2016 Dec; 10(12):11105-11114. PubMed ID: 28024358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanics of Single Aluminum Nanodisks.
    Su MN; Dongare PD; Chakraborty D; Zhang Y; Yi C; Wen F; Chang WS; Nordlander P; Sader JE; Halas NJ; Link S
    Nano Lett; 2017 Apr; 17(4):2575-2583. PubMed ID: 28301725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional emission from a single plasmonic scatterer.
    Coenen T; Bernal Arango F; Femius Koenderink A; Polman A
    Nat Commun; 2014; 5():3250. PubMed ID: 24488237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.