These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32988066)

  • 1. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin.
    Li Y; Rui G; Zhou S; Gu B; Yu Y; Cui Y; Zhan Q
    Opt Express; 2020 Sep; 28(19):27808-27822. PubMed ID: 32988066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of multiple longitudinal polarization vortex structures and its application in sorting chiral nanoparticles.
    Ying X; Rui G; Zou S; Gu B; Zhan Q; Cui Y
    Opt Express; 2021 Jun; 29(12):19001-19014. PubMed ID: 34154143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region.
    Cao T; Qiu Y
    Nanoscale; 2018 Jan; 10(2):566-574. PubMed ID: 29182186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective manipulation of single chiral nanoparticles using optical tweezers.
    Ali R; Pinheiro FA; Dutra RS; Rosa FSS; Maia Neto PA
    Nanoscale; 2020 Feb; 12(8):5031-5037. PubMed ID: 32067004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Optical Trapping of Multiple Pairs of Enantiomers by Focused Hybrid Polarized Beams.
    Zhang Y; Li M; Yan S; Zhou Y; Gao W; Niu R; Xu X; Yao B
    Small; 2024 Jun; 20(25):e2309395. PubMed ID: 38196155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale chiral imaging under complex optical field excitation with controllable oriented chiral dipole moment.
    Rui G; Ji Y; Gu B; Cui Y; Zhan Q
    Opt Express; 2022 Nov; 30(23):42696-42711. PubMed ID: 36366718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tightly focused optical field with controllable photonic spin orientation.
    Chen J; Wan C; Kong LJ; Zhan Q
    Opt Express; 2017 Aug; 25(16):19517-19528. PubMed ID: 29041145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves.
    Chen H; Jiang Y; Wang N; Lu W; Liu S; Lin Z
    Opt Lett; 2015 Dec; 40(23):5530-3. PubMed ID: 26625043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating and trapping of chiral nanoparticles with dielectric photonic crystal slabs.
    Hou SS; Liu Y; Zhang WX; Zhang XD
    Opt Express; 2021 May; 29(10):15177-15189. PubMed ID: 33985222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant chiral optical forces in the vicinity of optical nanofibers.
    Alizadeh MH; Reinhard BM
    Opt Lett; 2016 Oct; 41(20):4735-4738. PubMed ID: 28005880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical gradient force on chiral particles.
    Yamanishi J; Ahn HY; Yamane H; Hashiyada S; Ishihara H; Nam KT; Okamoto H
    Sci Adv; 2022 Sep; 8(38):eabq2604. PubMed ID: 36129977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Trapping Separation of Chiral Nanoparticles by Subwavelength Slot Waveguides.
    Fang L; Wang J
    Phys Rev Lett; 2021 Dec; 127(23):233902. PubMed ID: 34936799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization-free optical focal field engineering through reversing the radiation pattern from a uniform line source.
    Yu Y; Zhan Q
    Opt Express; 2015 Mar; 23(6):7527-34. PubMed ID: 25837091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sieving nanometer enantiomers using bound states in the continuum from the metasurface.
    Mao L; Cheng P; Liu K; Lian M; Cao T
    Nanoscale Adv; 2022 Mar; 4(6):1617-1625. PubMed ID: 36134367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of controllable chiral optical fields by vector beams.
    Li M; Yan S; Zhang Y; Yao B
    Nanoscale; 2020 Jul; 12(28):15453-15459. PubMed ID: 32666994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulated flipping torque, spin-induced radiation pressure, and chiral sorting exerted by guided light.
    Abujetas DR; Marqués MI; Sánchez-Gil JA
    Opt Express; 2021 May; 29(11):16969-16979. PubMed ID: 34154248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of a multi-segmented optical needle with prescribed length and spacing using the radiation pattern from a sectional-uniform line source.
    Yu Y; Huang H; Zhou M; Zhan Q
    Sci Rep; 2017 Sep; 7(1):10708. PubMed ID: 28878386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.