These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32988098)

  • 21. A Highly Sensitive Fiber-Optic Fabry-Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement.
    Li X; Shao Y; Yu Y; Zhang Y; Wei S
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27258273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry-Pérot Optical Microcavities.
    Tran KN; Tran HNQ; Lim SY; Abell AD; Law CS; Santos A
    ACS Appl Mater Interfaces; 2024 May; 16(19):24961-24975. PubMed ID: 38706267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiplexing temperature-compensated open-cavity Fabry-Perot sensors at a fiber tip.
    Pfalzgraf I; Suntsov S; Kip D
    Appl Opt; 2021 Nov; 60(33):10402-10408. PubMed ID: 34807050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonant-mode engineering for additive reflective structural colors with high brightness and high color purity.
    Kwak H; Jung I; Kim D; Ju S; Choi S; Kang C; Kim H; Baac HW; Ok JG; Lee KT
    Sci Rep; 2024 Jun; 14(1):13694. PubMed ID: 38871983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critically coupled Fabry-Perot cavity with high signal contrast for refractive index sensing.
    Park GC; Park K
    Sci Rep; 2021 Oct; 11(1):19575. PubMed ID: 34599221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-Field Mapping of Optical Fabry-Perot Modes in All-Dielectric Nanoantennas.
    Frolov AY; Verellen N; Li J; Zheng X; Paddubrouskaya H; Denkova D; Shcherbakov MR; Vandenbosch GAE; Panov VI; Van Dorpe P; Fedyanin AA; Moshchalkov VV
    Nano Lett; 2017 Dec; 17(12):7629-7637. PubMed ID: 29083191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TiO2 nanoparticle thin film-coated optical fiber Fabry-Perot sensor.
    Jiang M; Li QS; Wang JN; Jin Z; Sui Q; Ma Y; Shi J; Zhang F; Jia L; Yao WG; Dong WF
    Opt Express; 2013 Feb; 21(3):3083-90. PubMed ID: 23481766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering multimodal dielectric resonance of TiO
    Abbas MA; Zubair A; Riaz K; Huang W; Teng J; Mehmood MQ; Zubair M
    Opt Express; 2020 Aug; 28(16):23509-23522. PubMed ID: 32752346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive refractive index sensor based on a TiO
    Li QS; Xiang D; Chang ZM; Shi JG; Ma YH; Cai L; Feng D; Dong WF
    Appl Opt; 2017 Mar; 56(7):1930-1934. PubMed ID: 28248391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing.
    Wang X; Wang S; Jiang J; Liu K; Zhang P; Wu W; Liu T
    Opt Express; 2019 Feb; 27(4):4204-4215. PubMed ID: 30876039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing a Novel Terahertz Fabry-Perot Microcavity Biosensor by Incorporating Porous Film for Yeast Sensing.
    Kim HS; Jun SW; Ahn YH
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator.
    Tu Z; Gao D; Zhang M; Zhang D
    Opt Express; 2017 Aug; 25(17):20911-20922. PubMed ID: 29041767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit.
    Bahramipanah M; Dutta-Gupta S; Abasahl B; Martin OJ
    ACS Nano; 2015 Jul; 9(7):7621-33. PubMed ID: 26131684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-reflection metallic anode-enhanced performance of organic solar cells via cross coupling between Fabry-Perot cavity modes and microcavity modes.
    Jin Y; Huang Z; Jiang J; Wu Z; Li X; Gong D; Xiang C
    Opt Lett; 2022 Sep; 47(17):4355-4358. PubMed ID: 36048652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface plasmon resonance biosensor based on graphene and grating excitation.
    Tong K; Wang Y; Wang F; Sun J; Wu X
    Appl Opt; 2019 Mar; 58(7):1824-1829. PubMed ID: 30874222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasensitive optofluidic coupled Fabry-Perot capillary sensors.
    Zhao X; Zhou Y; Li Y; Guo J; Liu Z; Luo M; Guo Z; Yang X; Zhang M; Wang Y; Wu X
    Opt Express; 2022 Dec; 30(25):45070-45081. PubMed ID: 36522917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SiN
    Wolffenbuttel R; Winship D; Bilby D; Visser J; Qin Y; Gianchandani Y
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field penetrations in photonic crystal Fano reflectors.
    Zhao D; Ma Z; Zhou W
    Opt Express; 2010 Jun; 18(13):14152-8. PubMed ID: 20588548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence.
    Han W; Reiter S; Schlipf J; Mai C; Spirito D; Jose J; Wenger C; Fischer IA
    Opt Express; 2023 May; 31(11):17389-17407. PubMed ID: 37381475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.