These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32988136)

  • 1. Paraxial and tightly focused behaviour of the double ring perfect optical vortex.
    Rickenstorff C; Gómez-Pavón LDC; Sosa-Sánchez CT; Silva-Ortigoza G
    Opt Express; 2020 Sep; 28(19):28713-28726. PubMed ID: 32988136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams.
    Liang Y; Yan S; He M; Li M; Cai Y; Wang Z; Lei M; Yao B
    Opt Lett; 2019 Mar; 44(6):1504-1507. PubMed ID: 30874687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing property of a double-ring-shaped radially polarized beam.
    Kozawa Y; Sato S
    Opt Lett; 2006 Mar; 31(6):820-2. PubMed ID: 16544635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of a Tightly Focused Circularly Polarized Anomalous Vortex Beam and Its Optical Forces on Trapped Nanoparticles.
    Bai Y; Dong M; Zhang M; Yang Y
    Nanoscale Res Lett; 2019 Jul; 14(1):252. PubMed ID: 31350679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams.
    Nie Z; Ding W; Li D; Zhang X; Wang Y; Song Y
    Opt Express; 2015 Jan; 23(2):690-701. PubMed ID: 25835829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge.
    Xu HF; Zhang R; Sheng ZQ; Qu J
    Opt Express; 2019 Aug; 27(17):23959-23969. PubMed ID: 31510292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.
    Gu B; Xu D; Rui G; Lian M; Cui Y; Zhan Q
    Appl Opt; 2015 Sep; 54(27):8123-9. PubMed ID: 26406514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity property of an optical chain generated by the tightly focused femtosecond radially polarization pulse.
    Li D; Chen X; Yang Z; Zhang W; Zhao J
    Appl Opt; 2021 Mar; 60(8):2380-2387. PubMed ID: 33690338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental studies on tightly focused vector vortex beams.
    Zhou Z; Tan Q; Jin G
    Appl Opt; 2011 Nov; 50(31):G80-5. PubMed ID: 22086053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical generation of multiple focal spot pairs with controllable position and polarization.
    Zhang Y; Chen J; Bai C; Zhang D; Zhan Q
    Opt Express; 2020 Aug; 28(18):26706-26716. PubMed ID: 32906939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimal Focal Spot Size Measured Based on Intensity and Power Flow.
    Kotlyar VV; Stafeev SS; Zaitsev VD
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical manipulation using highly focused alternate radially and azimuthally polarized beams modulated by a devil's lens.
    Liu Z; Jones PH
    J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2501-2508. PubMed ID: 27906277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbital angular momentum density characteristics of tightly focused polarized Laguerre-Gaussian beam.
    Zhao Y; Yao Y; Xu X; Xu K; Yang Y; Tian J
    Appl Opt; 2020 Aug; 59(24):7396-7407. PubMed ID: 32902508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams.
    Xu HF; Zhou Y; Wu HW; Chen HJ; Sheng ZQ; Qu J
    Opt Express; 2018 Aug; 26(16):20076-20088. PubMed ID: 30119323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays.
    Wang X; Zhu B; Dong Y; Wang S; Zhu Z; Bo F; Li X
    Opt Express; 2017 Oct; 25(22):26844-26852. PubMed ID: 29092169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular Dammann grating under high numerical aperture focusing.
    Yu J; Zhou C; Jia W; Hu A; Wang S; Ma J
    Appl Opt; 2012 Mar; 51(7):994-9. PubMed ID: 22410904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sharper focal spot formed by higher-order radially polarized laser beams.
    Kozawa Y; Sato S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1793-8. PubMed ID: 17491650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.
    Liang Y; Lei M; Yan S; Li M; Cai Y; Wang Z; Yu X; Yao B
    Appl Opt; 2018 Jan; 57(1):79-84. PubMed ID: 29328117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.