These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32988590)

  • 1. Small molecule inhibitors of the prostate cancer target KMT2D.
    Yu Q; Liao Z; Liu D; Xie W; Liu Z; Liao G; Wang C
    Biochem Biophys Res Commun; 2020 Dec; 533(3):540-547. PubMed ID: 32988590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of KMT2D induces prostate cancer ROS-mediated DNA damage by suppressing the enhancer activity and DNA binding of antioxidant transcription factor FOXO3.
    Lv S; Wen H; Shan X; Li J; Wu Y; Yu X; Huang W; Wei Q
    Epigenetics; 2019 Dec; 14(12):1194-1208. PubMed ID: 31232159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4.
    Lv S; Ji L; Chen B; Liu S; Lei C; Liu X; Qi X; Wang Y; Lai-Han Leung E; Wang H; Zhang L; Yu X; Liu Z; Wei Q; Lu L
    Oncogene; 2018 Mar; 37(10):1354-1368. PubMed ID: 29269867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation.
    Guo C; Chen LH; Huang Y; Chang CC; Wang P; Pirozzi CJ; Qin X; Bao X; Greer PK; McLendon RE; Yan H; Keir ST; Bigner DD; He Y
    Oncotarget; 2013 Nov; 4(11):2144-53. PubMed ID: 24240169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer.
    Alam H; Tang M; Maitituoheti M; Dhar SS; Kumar M; Han CY; Ambati CR; Amin SB; Gu B; Chen TY; Lin YH; Chen J; Muller FL; Putluri N; Flores ER; DeMayo FJ; Baseler L; Rai K; Lee MG
    Cancer Cell; 2020 Apr; 37(4):599-617.e7. PubMed ID: 32243837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone methyltransferase KMT2D promotes prostate cancer progression through paracrine IL-6 signaling.
    Zhang J; Ye Y; Xu Z; Luo M; Wu C; Zhang Y; Lv S; Wei Q
    Biochem Biophys Res Commun; 2023 May; 655():35-43. PubMed ID: 36924677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression.
    Li W; Wu L; Jia H; Lin Z; Zhong R; Li Y; Jiang C; Liu S; Zhou X; Zhang E
    Cell Mol Biol Lett; 2021 Nov; 26(1):45. PubMed ID: 34758724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer.
    Xiong W; Deng Z; Tang Y; Deng Z; Li M
    Biochem Biophys Res Commun; 2018 Sep; 504(1):129-136. PubMed ID: 30177394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I.
    Yu CC; Pan SL; Chao SW; Liu SP; Hsu JL; Yang YC; Li TK; Huang WJ; Guh JH
    Biochem Pharmacol; 2014 Aug; 90(3):320-30. PubMed ID: 24915421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer.
    Ding B; Yan L; Zhang Y; Wang Z; Zhang Y; Xia D; Ye Z; Xu H
    FEBS Open Bio; 2019 Apr; 9(4):693-706. PubMed ID: 30984543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KMT2D inhibits the growth and metastasis of bladder Cancer cells by maintaining the tumor suppressor genes.
    Sun P; Wu T; Sun X; Cui Z; Zhang H; Xia Q; Zhang D
    Biomed Pharmacother; 2019 Jul; 115():108924. PubMed ID: 31100540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.
    Ortega-Molina A; Boss IW; Canela A; Pan H; Jiang Y; Zhao C; Jiang M; Hu D; Agirre X; Niesvizky I; Lee JE; Chen HT; Ennishi D; Scott DW; Mottok A; Hother C; Liu S; Cao XJ; Tam W; Shaknovich R; Garcia BA; Gascoyne RD; Ge K; Shilatifard A; Elemento O; Nussenzweig A; Melnick AM; Wendel HG
    Nat Med; 2015 Oct; 21(10):1199-208. PubMed ID: 26366710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone H3 lysine 4 methyltransferase KMT2D.
    Froimchuk E; Jang Y; Ge K
    Gene; 2017 Sep; 627():337-342. PubMed ID: 28669924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.
    Juhlin CC; Stenman A; Haglund F; Clark VE; Brown TC; Baranoski J; Bilguvar K; Goh G; Welander J; Svahn F; Rubinstein JC; Caramuta S; Yasuno K; Günel M; Bäckdahl M; Gimm O; Söderkvist P; Prasad ML; Korah R; Lifton RP; Carling T
    Genes Chromosomes Cancer; 2015 Sep; 54(9):542-54. PubMed ID: 26032282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering novel P38α inhibitors for the treatment of prostate cancer through virtual screening methods.
    Li K; Li Z; Tao Y; Wang Q; Lai Y; Wu W; Peng S; Guo Z; Huang H
    Future Med Chem; 2019 Dec; 11(24):3125-3137. PubMed ID: 31838901
    [No Abstract]   [Full Text] [Related]  

  • 16. MiRNA-217 accelerates the proliferation and migration of bladder cancer via inhibiting KMT2D.
    Hou G; Xu W; Jin Y; Wu J; Pan Y; Zhou F
    Biochem Biophys Res Commun; 2019 Nov; 519(4):747-753. PubMed ID: 31547991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KDM5 inhibition offers a novel therapeutic strategy for the treatment of KMT2D mutant lymphomas.
    Heward J; Konali L; D'Avola A; Close K; Yeomans A; Philpott M; Dunford J; Rahim T; Al Seraihi AF; Wang J; Korfi K; Araf S; Iqbal S; Bewicke-Copley F; Kumar E; Barisic D; Calaminici M; Clear A; Gribben J; Johnson P; Neve R; Cutillas P; Okosun J; Oppermann U; Melnick A; Packham G; Fitzgibbon J
    Blood; 2021 Aug; 138(5):370-381. PubMed ID: 33786580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells.
    Qiu JX; Zhou ZW; He ZX; Zhao RJ; Zhang X; Yang L; Zhou SF; Mao ZF
    Drug Des Devel Ther; 2015; 9():349-417. PubMed ID: 25609920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone methyltransferase KMT2D mediated lipid metabolism via peroxisome proliferator-activated receptor gamma in prostate cancer.
    Zhai Q; Luo M; Zhang Y; Zhang W; Wu C; Lv S; Wei Q
    Transl Cancer Res; 2022 Aug; 11(8):2607-2621. PubMed ID: 36093518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search.
    Ding H; Lu WC; Hu JC; Liu YC; Zhang CH; Lian FL; Zhang NX; Meng FW; Luo C; Chen KX
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29498708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.