These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32988828)
1. The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity. Wong CF; Grüber G Antimicrob Agents Chemother; 2020 Nov; 64(12):. PubMed ID: 32988828 [TBL] [Abstract][Full Text] [Related]
2. A systematic assessment of mycobacterial F Wong CF; Lau AM; Harikishore A; Saw WG; Shin J; Ragunathan P; Bhushan S; Ngan SC; Sze SK; Bates RW; Dick T; Grüber G FEBS J; 2021 Feb; 288(3):818-836. PubMed ID: 32525613 [TBL] [Abstract][Full Text] [Related]
3. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. Bogdanović N; Sundararaman L; Kamariah N; Tyagi A; Bhushan S; Ragunathan P; Shin J; Dick T; Grüber G J Struct Biol; 2018 Dec; 204(3):420-434. PubMed ID: 30342092 [TBL] [Abstract][Full Text] [Related]
4. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H(+) pumping. Hotra A; Suter M; Biuković G; Ragunathan P; Kundu S; Dick T; Grüber G FEBS J; 2016 May; 283(10):1947-61. PubMed ID: 26996828 [TBL] [Abstract][Full Text] [Related]
5. Structure and subunit arrangement of Mycobacterial F Kamariah N; Huber RG; Nartey W; Bhushan S; Bond PJ; Grüber G J Struct Biol; 2019 Aug; 207(2):199-208. PubMed ID: 31132404 [TBL] [Abstract][Full Text] [Related]
6. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine. Joon S; Ragunathan P; Sundararaman L; Nartey W; Kundu S; Manimekalai MSS; Bogdanović N; Dick T; Grüber G FEBS J; 2018 Mar; 285(6):1111-1128. PubMed ID: 29360236 [TBL] [Abstract][Full Text] [Related]
7. Atomic insights of an up and down conformation of the Acinetobacter baumannii F Saw WG; Le KCM; Shin J; Kwek JHM; Wong CF; Ragunathan P; Fong TC; Müller V; Grüber G FASEB J; 2023 Jul; 37(7):e23040. PubMed ID: 37318822 [TBL] [Abstract][Full Text] [Related]
8. TBAJ-876 Retains Bedaquiline's Activity against Subunits c and ε of Sarathy JP; Ragunathan P; Shin J; Cooper CB; Upton AM; Grüber G; Dick T Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31358589 [TBL] [Abstract][Full Text] [Related]
9. The uniqueness of subunit α of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation. Ragunathan P; Sielaff H; Sundararaman L; Biuković G; Subramanian Manimekalai MS; Singh D; Kundu S; Wohland T; Frasch W; Dick T; Grüber G J Biol Chem; 2017 Jul; 292(27):11262-11279. PubMed ID: 28495884 [TBL] [Abstract][Full Text] [Related]
10. Mutational Analysis of Mycobacterial F-ATP Synthase Subunit δ Leads to a Potent δ Enzyme Inhibitor. Harikishore A; Saw WG; Ragunathan P; Litty D; Dick T; Müller V; Grüber G ACS Chem Biol; 2022 Mar; 17(3):529-535. PubMed ID: 35148057 [TBL] [Abstract][Full Text] [Related]
11. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na Bogdanović N; Trifunović D; Sielaff H; Westphal L; Bhushan S; Müller V; Grüber G FEBS J; 2019 May; 286(10):1894-1907. PubMed ID: 30791207 [TBL] [Abstract][Full Text] [Related]
12. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans. Jarman OD; Biner O; Hirst J Biochim Biophys Acta Bioenerg; 2021 Mar; 1862(3):148355. PubMed ID: 33321110 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit. Keis S; Stocker A; Dimroth P; Cook GM J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672 [TBL] [Abstract][Full Text] [Related]
14. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. Senior AE; Muharemagić A; Wilke-Mounts S Biochemistry; 2006 Dec; 45(51):15893-902. PubMed ID: 17176112 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional analysis of the intrinsic inhibitor subunit epsilon of F1-ATPase from photosynthetic organisms. Yagi H; Konno H; Murakami-Fuse T; Isu A; Oroguchi T; Akutsu H; Ikeguchi M; Hisabori T Biochem J; 2009 Dec; 425(1):85-94. PubMed ID: 19785575 [TBL] [Abstract][Full Text] [Related]
16. Cryo-EM structure of the Mycobacterium abscessus F Wong CF; Leow CY; Grüber G Biochem Biophys Res Commun; 2023 Sep; 671():140-145. PubMed ID: 37302287 [TBL] [Abstract][Full Text] [Related]
17. Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. Kamariah N; Ragunathan P; Shin J; Saw WG; Wong CF; Dick T; Grüber G Prog Biophys Mol Biol; 2020 May; 152():64-73. PubMed ID: 31743686 [TBL] [Abstract][Full Text] [Related]
19. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F Kondo K; Takeyama Y; Sunamura EI; Madoka Y; Fukaya Y; Isu A; Hisabori T Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):319-325. PubMed ID: 29470949 [TBL] [Abstract][Full Text] [Related]
20. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity. Inabe K; Kondo K; Yoshida K; Wakabayashi KI; Hisabori T J Biol Chem; 2019 Jun; 294(26):10094-10103. PubMed ID: 31068416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]