BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 32989135)

  • 41. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants.
    John Andrews T; Whitney SM
    Arch Biochem Biophys; 2003 Jun; 414(2):159-69. PubMed ID: 12781767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complementation of the nuclear antisense rbcS-induced photosynthesis deficiency by introducing an rbcS gene into the tobacco plastid genome.
    Zhang XH; Ewy RG; Widholm JM; Portis AR
    Plant Cell Physiol; 2002 Nov; 43(11):1302-13. PubMed ID: 12461130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
    Yamori W; Masumoto C; Fukayama H; Makino A
    Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selection of Cyanobacterial (
    Satagopan S; Huening KA; Tabita FR
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the rice Rubisco-Rubisco activase interaction via subunit heterooligomerization.
    Shivhare D; Ng J; Tsai YC; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24041-24048. PubMed ID: 31712424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice.
    Suganami M; Suzuki Y; Tazoe Y; Yamori W; Makino A
    Plant Physiol; 2021 Feb; 185(1):108-119. PubMed ID: 33631807
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.
    Young JN; Heureux AM; Sharwood RE; Rickaby RE; Morel FM; Whitney SM
    J Exp Bot; 2016 May; 67(11):3445-56. PubMed ID: 27129950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco.
    von Caemmerer S; Lawson T; Oxborough K; Baker NR; Andrews TJ; Raines CA
    J Exp Bot; 2004 May; 55(400):1157-66. PubMed ID: 15107451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing Rubisco and its regulation for greater resource use efficiency.
    Carmo-Silva E; Scales JC; Madgwick PJ; Parry MA
    Plant Cell Environ; 2015 Sep; 38(9):1817-32. PubMed ID: 25123951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.
    Makino A; Nakano H; Mae T; Shimada T; Yamamoto N
    J Exp Bot; 2000 Feb; 51 Spec No():383-9. PubMed ID: 10938846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants.
    Price GD; Evans JR; von Caemmerer S; Yu JW; Badger MR
    Planta; 1995; 195(3):369-78. PubMed ID: 7766043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance.
    Galmés J; Perdomo JA; Flexas J; Whitney SM
    Photosynth Res; 2013 Jul; 115(2-3):153-66. PubMed ID: 23703453
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.
    Crafts-Brandner SJ; Salvucci ME
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13430-5. PubMed ID: 11069297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O 2 specificity but not activation by Rubisco activase.
    Esquivel MG; Genkov T; Nogueira AS; Salvucci ME; Spreitzer RJ
    Photosynth Res; 2013 Dec; 118(3):209-18. PubMed ID: 24014091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth and photosynthesis under high and low irradiance of Arabidopsis thaliana antisense mutants with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase activase content.
    Eckardt NA; Snyder GW; Portis AR; Orgen WL
    Plant Physiol; 1997 Feb; 113(2):575-86. PubMed ID: 9046598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.
    Prins A; van Heerden PD; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2008; 59(7):1935-50. PubMed ID: 18503045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency.
    Greene DN; Whitney SM; Matsumura I
    Biochem J; 2007 Jun; 404(3):517-24. PubMed ID: 17391103
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rubisco in planta kcat is regulated in balance with photosynthetic electron transport.
    Eichelmann H; Talts E; Oja V; Padu E; Laisk A
    J Exp Bot; 2009; 60(14):4077-88. PubMed ID: 19661266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Overproduction of Rubisco Activase on Rubisco Content in Transgenic Rice Grown at Different N Levels.
    Suganami M; Suzuki Y; Kondo E; Nishida S; Konno S; Makino A
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications.
    Valegård K; Andralojc PJ; Haslam RP; Pearce FG; Eriksen GK; Madgwick PJ; Kristoffersen AK; van Lun M; Klein U; Eilertsen HC; Parry MAJ; Andersson I
    J Biol Chem; 2018 Aug; 293(34):13033-13043. PubMed ID: 29925588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.