These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32989319)

  • 1. Advances and challenges for fluorescence nanothermometry.
    Zhou J; Del Rosal B; Jaque D; Uchiyama S; Jin D
    Nat Methods; 2020 Oct; 17(10):967-980. PubMed ID: 32989319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanometer-scale luminescent thermometry in bovine embryos.
    Alkahtani M; Jiang L; Brick R; Hemmer P; Scully M
    Opt Lett; 2017 Dec; 42(23):4812-4815. PubMed ID: 29216117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers.
    Spicer G; Efeyan A; Adam AP; Thompson SA
    J Biophotonics; 2019 Sep; 12(9):e201900044. PubMed ID: 31034763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red-Emitting Carbon Nanodot-Based Wide-Range Responsive Nanothermometer for Intracellular Temperature Sensing.
    Xu Y; Yang Y; Lin S; Xiao L
    Anal Chem; 2020 Dec; 92(23):15632-15638. PubMed ID: 33170648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanothermometry: From Microscopy to Thermal Treatments.
    Zhou H; Sharma M; Berezin O; Zuckerman D; Berezin MY
    Chemphyschem; 2016 Jan; 17(1):27-36. PubMed ID: 26443335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaching Deeper: Absolute In Vivo Thermal Reading of Liver by Combining Superbright Ag
    Lifante J; Shen Y; Zabala Gutierrez I; Rubia-Rodríguez I; Ortega D; Fernandez N; Melle S; Granado M; Rubio-Retama J; Jaque D; Ximendes E
    Adv Sci (Weinh); 2021 May; 8(9):2003838. PubMed ID: 33977056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry.
    Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM
    Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro/Nanoscale Thermometry for Cellular Thermal Sensing.
    Bai T; Gu N
    Small; 2016 Sep; 12(34):4590-610. PubMed ID: 27172908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence thermometers: intermediation of fundamental temperature and light.
    Feng G; Zhang H; Zhu X; Zhang J; Fang J
    Biomater Sci; 2022 Apr; 10(8):1855-1882. PubMed ID: 35290425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.
    Wu Y; Liu J; Ma J; Liu Y; Wang Y; Wu D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14396-405. PubMed ID: 27197838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges for optical nanothermometry in biological environments.
    Quintanilla M; Henriksen-Lacey M; Renero-Lecuna C; Liz-Marzán LM
    Chem Soc Rev; 2022 Jun; 51(11):4223-4242. PubMed ID: 35587578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Ischemia Detection by Luminescent Nanothermometers.
    Ximendes EC; Rocha U; Del Rosal B; Vaquero A; Sanz-Rodríguez F; Monge L; Ren F; Vetrone F; Ma D; García-Solé J; Jacinto C; Jaque D; Fernández N
    Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28009096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review.
    Qiao J; Mu X; Qi L
    Biosens Bioelectron; 2016 Nov; 85():403-413. PubMed ID: 27203462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Thermal Probing Using Aggregated Fluorescent Nanodiamonds.
    Wu T; Chen X; Gong Z; Yan J; Guo J; Zhang Y; Li Y; Li B
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103354. PubMed ID: 34813176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardizing luminescence nanothermometry for biomedical applications.
    Bednarkiewicz A; Marciniak L; Carlos LD; Jaque D
    Nanoscale; 2020 Jul; 12(27):14405-14421. PubMed ID: 32633305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GFP fluorescence peak fraction analysis based nanothermometer for the assessment of exothermal mitochondria activity in live cells.
    Savchuk OA; Silvestre OF; Adão RMR; Nieder JB
    Sci Rep; 2019 May; 9(1):7535. PubMed ID: 31101860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratiometric Nanothermometer Based on a Radical Excimer for In Vivo Sensing.
    Blasi D; Gonzalez-Pato N; Rodriguez Rodriguez X; Diez-Zabala I; Srinivasan SY; Camarero N; Esquivias O; Roldán M; Guasch J; Laromaine A; Gorostiza P; Veciana J; Ratera I
    Small; 2023 Aug; 19(32):e2207806. PubMed ID: 37060223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound-switchable fluorescence thermometry with dual detection channels using temperature-sensitive liposomes.
    Yao T; Ren L; Yuan B
    J Biophotonics; 2024 May; 17(5):e202300531. PubMed ID: 38414356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanometre-scale thermometry in a living cell.
    Kucsko G; Maurer PC; Yao NY; Kubo M; Noh HJ; Lo PK; Park H; Lukin MD
    Nature; 2013 Aug; 500(7460):54-8. PubMed ID: 23903748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.