BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32989571)

  • 1. What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective.
    Manoj KM; Gideon DA; Parashar A
    Cell Biochem Biophys; 2021 Mar; 79(1):3-10. PubMed ID: 32989571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of membrane-embedded cytochrome b-complexes with quinols: Classical Q-cycle and murburn model.
    Manoj KM; Gideon DA; Jaeken L
    Cell Biochem Funct; 2022 Mar; 40(2):118-126. PubMed ID: 35026863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins.
    Gideon DA; Nirusimhan V; Manoj KM
    J Biomol Struct Dyn; 2022 Mar; 40(5):1995-2009. PubMed ID: 33073701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of a site of energy coupling between plastoquinone and cytochrome f in the electron-transport chain of spinach chloroplasts.
    Böhme H; Cramer WA
    Biochemistry; 1972 Mar; 11(7):1155-60. PubMed ID: 5012973
    [No Abstract]   [Full Text] [Related]  

  • 5. Electron flow through plastoquinone and cytochromes b6 and f in chloroplasts.
    Velthuys BR
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2765-9. PubMed ID: 288064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein/lipid interaction in the bacterial photosynthetic reaction center: phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones.
    Nagy L; Milano F; Dorogi M; Agostiano A; Laczkó G; Szebényi K; Váró G; Trotta M; Maróti P
    Biochemistry; 2004 Oct; 43(40):12913-23. PubMed ID: 15461464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transport between plastoquinone and chlorophyll Ai in chloroplasts. II. Reaction kinetics and the function of plastocyanin in situ.
    Haehnel W
    Biochim Biophys Acta; 1977 Mar; 459(3):418-41. PubMed ID: 849434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic.
    Manoj KM; Soman V; David Jacob V; Parashar A; Gideon DA; Kumar M; Manekkathodi A; Ramasamy S; Pakshirajan K; Bazhin NM
    Arch Biochem Biophys; 2019 Nov; 676():108128. PubMed ID: 31622585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A perspective on Q-cycles.
    Rich PR
    J Bioenerg Biomembr; 1986 Jun; 18(3):145-56. PubMed ID: 3015894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Energy conservation in the photosynthetic membrane of chloroplasts].
    Trebst A; Hauska G
    Naturwissenschaften; 1974 Jul; 61(7):308-16. PubMed ID: 4152379
    [No Abstract]   [Full Text] [Related]  

  • 11. The mechanism of energy conservation in the mitochondrial respiratory chain.
    Slater EC
    Harvey Lect; 1971-1972; 66():19-42. PubMed ID: 4949246
    [No Abstract]   [Full Text] [Related]  

  • 12. Electron and proton transfers through quinones and cytochrome bc complexes.
    Rich PR
    Biochim Biophys Acta; 1984 Apr; 768(1):53-79. PubMed ID: 6322844
    [No Abstract]   [Full Text] [Related]  

  • 13. The murburn precepts for aerobic respiration and redox homeostasis.
    Manoj KM; Bazhin NM
    Prog Biophys Mol Biol; 2021 Dec; 167():104-120. PubMed ID: 34118265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II.
    Izawa S; Gould JM; Ort DR; Felker P; Good NE
    Biochim Biophys Acta; 1973 Apr; 305(1):119-28. PubMed ID: 4719595
    [No Abstract]   [Full Text] [Related]  

  • 15. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers.
    Gunner MR; Madeo J; Zhu Z
    J Bioenerg Biomembr; 2008 Oct; 40(5):509-19. PubMed ID: 18979192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The semiquinone cycle. A hypothesis of electron transfer and proton translocation in cytochrome bc-type complexes.
    Wikström M; Krab K
    J Bioenerg Biomembr; 1986 Jun; 18(3):181-93. PubMed ID: 3015895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transport between plastoquinone and chlorophyll a-I in chloroplasts.
    Haehnel W
    Biochim Biophys Acta; 1973 Jun; 305(3):618-31. PubMed ID: 4733689
    [No Abstract]   [Full Text] [Related]  

  • 19. Correlation between plastoquinone reduction, field formation and proton translocation in photosynthesis.
    Reinwald E; Stiehl HH; Rumberg B
    Z Naturforsch B; 1968 Dec; 23(12):1616-7. PubMed ID: 4388236
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts.
    Graan T; Ort DR
    J Biol Chem; 1984 Nov; 259(22):14003-10. PubMed ID: 6389539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.