These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32990009)

  • 1. Heart rate variability features for different stress classification.
    Moridani MK; Mahabadi Z; Javadi N
    Bratisl Lek Listy; 2020; 121(9):619-627. PubMed ID: 32990009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on the Nonlinear Dynamical System Analysis of Electrocardiogram Signal.
    Nayak SK; Bit A; Dey A; Mohapatra B; Pal K
    J Healthc Eng; 2018; 2018():6920420. PubMed ID: 29854361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model presenting to assess variations in heart rate of ‎different age groups.
    Jahani M; Moridani MK; Anisi M
    Bratisl Lek Listy; 2023; 124(6):454-465. PubMed ID: 36876381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiovascular response to different types of acute stress stimulations.
    Jarczewski J; Furgała A; Winiarska A; Kaczmarczyk M; Poniatowski A
    Folia Med Cracov; 2019; 59(4):95-110. PubMed ID: 31904753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of HRV indices obtained from ECG and SCG signals from CEBS database.
    Siecinski S; Tkacz EJ; Kostka PS
    Biomed Eng Online; 2019 Jun; 18(1):69. PubMed ID: 31153383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination.
    Melillo P; Bracale M; Pecchia L
    Biomed Eng Online; 2011 Nov; 10():96. PubMed ID: 22059697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECG-based biometric under different psychological stress states.
    Zhou R; Wang C; Zhang P; Chen X; Du L; Wang P; Zhao Z; Du M; Fang Z
    Comput Methods Programs Biomed; 2021 Apr; 202():106005. PubMed ID: 33662803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated identification of normal and diabetes heart rate signals using nonlinear measures.
    Rajendra Acharya U; Faust O; Adib Kadri N; Suri JS; Yu W
    Comput Biol Med; 2013 Oct; 43(10):1523-9. PubMed ID: 24034744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher levels of Depressive Symptoms are Associated with Increased Resting-State Heart Rate Variability and Blunted Reactivity to a Laboratory Stress Task among Healthy Adults.
    Brugnera A; Zarbo C; Tarvainen MP; Carlucci S; Tasca GA; Adorni R; Auteri A; Compare A
    Appl Psychophysiol Biofeedback; 2019 Sep; 44(3):221-234. PubMed ID: 31041646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Comput Biol Med; 2019 Sep; 112():103381. PubMed ID: 31404718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings.
    Salahuddin L; Cho J; Jeong MG; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4656-9. PubMed ID: 18003044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and nonlinear analysis of normal and CAD-affected heart rate signals.
    Acharya UR; Faust O; Sree V; Swapna G; Martis RJ; Kadri NA; Suri JS
    Comput Methods Programs Biomed; 2014; 113(1):55-68. PubMed ID: 24119391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart rate variability as a biomarker for epilepsy seizure prediction.
    Moridani MK; Farhadi H
    Bratisl Lek Listy; 2017; 118(1):3-8. PubMed ID: 28127975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas.
    Chen S; Xu K; Zheng X; Li J; Fan B; Yao X; Li Z
    Comput Methods Programs Biomed; 2020 Nov; 196():105667. PubMed ID: 32712570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detrended Fluctuation Analysis: A Suitable Long-term Measure of HRV Signals in Children with Sleep Disordered Breathing.
    Krishnam R; Chatlapalli S; Nazeran H; Haltiwanger E; Pamula Y
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1174-7. PubMed ID: 17282401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience.
    Aimie-Salleh N; Malarvili MB; Whittaker AC
    Med Biol Eng Comput; 2019 Jun; 57(6):1229-1245. PubMed ID: 30734153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart rate analysis in normal subjects of various age groups.
    Acharya U R; Kannathal N; Sing OW; Ping LY; Chua T
    Biomed Eng Online; 2004 Jul; 3(1):24. PubMed ID: 15260880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ECG-Derived Heart Rate Variability Interpolation and 1-D Convolutional Neural Networks for Detecting Sleep Apnea.
    Sharan RV; Berkovsky S; Xiong H; Coiera E
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():637-640. PubMed ID: 33018068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG.
    Tanev G; Saadi DB; Hoppe K; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3386-9. PubMed ID: 25570717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Probability Threshold of Convolution Neural Network to Improve HRV-based Acute Stress Detection Performance.
    He J; Jiang N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5318-5321. PubMed ID: 31947057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.