These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32990039)

  • 41. Plasma Lipidomics Reveals Insights into Anti-Obesity Effect of
    Shon JC; Kim WC; Ryu R; Wu Z; Seo JS; Choi MS; Liu KH
    Nutrients; 2020 Sep; 12(10):. PubMed ID: 33003339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimization of aqueous extraction of antioxidants from Chrysanthemum (C. morifolium Ramat and C. indicum L.) flowers and evaluation of their protection from glycoxidation damage on human αA-crystallin.
    Yu YP; Lin KH; Shih MC; Chen CL; Lu CP
    Exp Eye Res; 2023 Oct; 235():109629. PubMed ID: 37625574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense.
    Nguyen MT; Awale S; Tezuka Y; Ueda JY; Tran Ql; Kadota S
    Planta Med; 2006 Jan; 72(1):46-51. PubMed ID: 16450295
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Lee MS; Kim Y
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32899992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. C₁₄-polyacetylene glucosides from Codonopsis pilosula.
    Jiang YP; Liu YF; Guo QL; Jiang ZB; Xu CB; Zhu CG; Yang YC; Lin S; Shi JG
    J Asian Nat Prod Res; 2015; 17(6):601-14. PubMed ID: 26009940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Determination of chlorogenic acid in chrysanthemum morifolium Ramat.flower].
    Li Z; Chen Z; Liao L; Lin S
    Zhongguo Zhong Yao Za Zhi; 1999 Jun; 24(6):329-30, 381. PubMed ID: 12212023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-line screening of natural antioxidants and the antioxidant activity prediction for the extracts from flowers of Chrysanthemum morifolium ramat.
    Zhang Z; Zhang Y; Wang L; Cui T; Wang Y; Chen J; Li W
    J Ethnopharmacol; 2022 Aug; 294():115336. PubMed ID: 35568113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Chemical Constituents from Leaves of "Chuju" Chrysanthemum morifolium and Their Antioxidant Activities in vitro].
    Wei Q; Ji XY; Long XS; Li QR; Yin H
    Zhong Yao Cai; 2015 Feb; 38(2):305-10. PubMed ID: 26415406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium.
    Lee JS; Kim HJ; Lee YS
    Planta Med; 2003 Sep; 69(9):859-61. PubMed ID: 14598216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-inflammatory chemical constituents of Flos Chrysanthemi Indici determined by UPLC-MS/MS integrated with network pharmacology.
    Tian D; Yang Y; Yu M; Han ZZ; Wei M; Zhang HW; Jia HM; Zou ZM
    Food Funct; 2020 Jul; 11(7):6340-6351. PubMed ID: 32608438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers.
    Ohmiya A
    Breed Sci; 2018 Jan; 68(1):119-127. PubMed ID: 29681754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection.
    Chen L; Kotani A; Kusu F; Wang Z; Zhu J; Hakamata H
    Chem Pharm Bull (Tokyo); 2015; 63(1):25-32. PubMed ID: 25743191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of environmentally friendly essential oils on enhancing the postharvest characteristics of
    El-Sayed IM; El-Ziat RA
    Heliyon; 2021 Jan; 7(1):e05909. PubMed ID: 33521350
    [No Abstract]   [Full Text] [Related]  

  • 54. Antidiabetic-Like Effects of Naringenin-7-O-glucoside from Edible Chrysanthemum 'Kotobuki' and Naringenin by Activation of the PI3K/Akt Pathway and PPARγ.
    Nishina A; Sato D; Yamamoto J; Kobayashi-Hattori K; Hirai Y; Kimura H
    Chem Biodivers; 2019 Jan; 16(1):e1800434. PubMed ID: 30462381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Screening of key flavonoids and monoterpenoids for xanthine oxidase inhibitory activity-oriented quality control of Chrysanthemum morifolium Ramat. 'Boju' based on spectrum-effect relationship coupled with UPLC-TOF-MS and HS-SPME-GC/MS.
    Peng A; Lin L; Zhao M
    Food Res Int; 2020 Nov; 137():109448. PubMed ID: 33233127
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical composition and antimicrobial activities of volatile oil extracted from
    Kuang CL; Lv D; Shen GH; Li SS; Luo QY; Zhang ZQ
    J Food Sci Technol; 2018 Jul; 55(7):2786-2794. PubMed ID: 30042595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties.
    Li Y; Yang P; Luo Y; Gao B; Sun J; Lu W; Liu J; Chen P; Zhang Y; Yu LL
    Food Chem; 2019 Jul; 286():8-16. PubMed ID: 30827670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of sucrose as an elicitor in increasing quercetin-3-O-rhamnoside (quercitrin) content of chrysanthemum (
    Setiawati T; Arofah AN; Nurzaman M; Annisa A; Mutaqin AZ; Hasan R
    BioTechnologia (Pozn); 2023; 104(3):289-300. PubMed ID: 37850113
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extraction, Purification, and Hydrolysis Behavior of Apigenin-7-O-Glucoside from
    Wang Y; Xu Z; Huang Y; Wen X; Wu Y; Zhao Y; Ni Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30424020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum.
    Song A; Su J; Wang H; Zhang Z; Zhang X; Van de Peer Y; Chen F; Fang W; Guan Z; Zhang F; Wang Z; Wang L; Ding B; Zhao S; Ding L; Liu Y; Zhou L; He J; Jia D; Zhang J; Chen C; Yu Z; Sun D; Jiang J; Chen S; Chen F
    Nat Commun; 2023 Apr; 14(1):2021. PubMed ID: 37037808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.