These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 329901)

  • 21. Mode of inhibition of mitochondrial energy transduction by chlorophenoxyisobutyrate.
    Panini SR; Kurup CK
    Biochem J; 1974 Aug; 142(2):253-61. PubMed ID: 4374192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of N,N'-dicyclohexylcarbodiimide and other carbodiimides on electron transfer catalyzed by submitochondrial particles.
    Beyer RE; Brink TW; Crankshaw DL; Kuner JM; Pasternak A
    Biochemistry; 1972 Mar; 11(6):961-9. PubMed ID: 4335291
    [No Abstract]   [Full Text] [Related]  

  • 23. Trinitrophenol: a membrane-impermeable uncoupler of oxidative phosphorylation.
    Hanstein WG; Hatefi Y
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):288-92. PubMed ID: 4521802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the protonmotive force.
    Cobley JG
    Biochem J; 1976 Jun; 156(3):481-91. PubMed ID: 182152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1975 Jul; 250(14):5336. PubMed ID: 167010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncouplers of oxidative phosphorylation.
    Terada H
    Environ Health Perspect; 1990 Jul; 87():213-8. PubMed ID: 2176586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-linked ion translocation in submitochondrial particles. 3. Transport of monovalent cations by submitochondrial particles.
    Cockrell RS
    J Biol Chem; 1973 Oct; 248(19):6828-33. PubMed ID: 4795660
    [No Abstract]   [Full Text] [Related]  

  • 28. Removal of "tightly bound" nucleotides from phosphorylating submitochondrial particles.
    Leimgruber RM; Senior AE
    J Biol Chem; 1976 Nov; 251(22):7110-3. PubMed ID: 136446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles.
    Jasaitis AA; Kuliene VV; Skulachev VP
    Biochim Biophys Acta; 1971 Apr; 234(1):177-81. PubMed ID: 5105364
    [No Abstract]   [Full Text] [Related]  

  • 30. Yeast protein-surfactant complexes uncouple microbial electron transfer and increase transmembrane leak of protons.
    Podella CW; Hooshnam N; Krassner SM; Goldfeld MG
    J Appl Microbiol; 2009 Jan; 106(1):140-8. PubMed ID: 19054242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation.
    Racker E; Kandrach A
    J Biol Chem; 1973 Aug; 248(16):5841-7. PubMed ID: 4353278
    [No Abstract]   [Full Text] [Related]  

  • 32. Interchangeability of coupling factors from bacterial and mammalian origin.
    Bogin E; Higashi T; Brodie AF
    Biochem Biophys Res Commun; 1970 Feb; 38(3):478-83. PubMed ID: 5443695
    [No Abstract]   [Full Text] [Related]  

  • 33. Molecular events in coupling and uncoupling of oxidative phosphorylation.
    Azzone GF; Luvisetto S
    Ann N Y Acad Sci; 1988; 550():277-88. PubMed ID: 2469371
    [No Abstract]   [Full Text] [Related]  

  • 34. The membrane structure studied with cationic dyes. 1. The binding of cationic dyes to submitochondrial particles and the question of the polarity of the ion-translocation mechanism.
    Dell'Antone P; Colonna R; Azzone GF
    Eur J Biochem; 1972 Jan; 24(3):553-65. PubMed ID: 5058599
    [No Abstract]   [Full Text] [Related]  

  • 35. Mitochondrial H2O2 formation: relationship with energy conservation.
    Loschen G; Azzi A; Flohé L
    FEBS Lett; 1973 Jun; 33(1):84-7. PubMed ID: 4737333
    [No Abstract]   [Full Text] [Related]  

  • 36. Purification and properties of a low molecular weight protein factor of mitochondrial energy-linked functions.
    You KS; Hatefi Y
    Biochim Biophys Acta; 1976 Mar; 423(3):398-412. PubMed ID: 4097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of ion-transporting antibiotics on the energy-linked reactions of submitochondrial particles.
    Montal M; Chance B; Lee CP; Azzi A
    Biochem Biophys Res Commun; 1969 Jan; 34(1):104-10. PubMed ID: 5762450
    [No Abstract]   [Full Text] [Related]  

  • 38. Energy-linked H+ efflux and uncoupler-induced H+ influx in submitochondrial particles from skeletal muscle.
    Scott DM; Storey BT; Lee CP
    Biochem Biophys Res Commun; 1979 Apr; 87(4):1058-65. PubMed ID: 37831
    [No Abstract]   [Full Text] [Related]  

  • 39. Magnetic circular dichroism and magnetooptical rotatory dispersion of submitochondrial particles at room and liquid nitrogen temperatures.
    Arutjunjan AM; Konstantinov AA; Sharonov YA
    FEBS Lett; 1974 Sep; 46(1):317-20. PubMed ID: 4472771
    [No Abstract]   [Full Text] [Related]  

  • 40. Studies on the characteristics of a proton pump in phospholipid vesicles inlayed with purified complex III from beef heart mitochondria.
    Guerrieri F; Nelson BD
    FEBS Lett; 1975 Jul; 54(3):339-42. PubMed ID: 236933
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.