These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32990275)

  • 61. Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co
    Chen T; Zhang Z; Cheng B; Chen R; Hu Y; Ma L; Zhu G; Liu J; Jin Z
    J Am Chem Soc; 2017 Sep; 139(36):12710-12715. PubMed ID: 28837329
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CS-CNTs homojunctions prepared by
    Qi M; Liu Y; Li Q; Yu Y; Gu J; Bai Z; Yan S; Wang L; Liu Y
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34384073
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Dual Functions of Defect-Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for LiS Batteries.
    Jiang J; Fan Q; Zheng Z; Kaiser MR; Chou S; Konstantinov K; Liu H; Lin L; Wang J
    Small; 2021 Dec; 17(49):e2103535. PubMed ID: 34708553
    [TBL] [Abstract][Full Text] [Related]  

  • 64. To Promote the Catalytic Conversion of Polysulfides Using Ni-B Alloy Nanoparticles on Carbon Nanotube Microspheres under High Sulfur Loading and a Lean Electrolyte.
    Wang ZY; Wang HM; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2021 May; 13(17):20222-20232. PubMed ID: 33878274
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Strongly trapping soluble lithium polysulfides using polar cysteamine groups for highly stable lithium sulfur batteries.
    Shen X; Xu N; Liu X; Liu J; Qian T; Yan C
    Nanotechnology; 2020 Nov; 31(48):485403. PubMed ID: 32975220
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cobalt-Tungsten Bimetallic Carbide Nanoparticles as Efficient Catalytic Material for High-Performance Lithium-Sulfur Batteries.
    Zhao P; Zhang Z; He H; Yu Y; Li X; Xie W; Yang Z; Cai J
    ChemSusChem; 2019 Nov; 12(21):4866-4873. PubMed ID: 31420969
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rational Fabrication of Nitrogen and Sulfur Codoped Carbon Nanotubes/MoS
    Xiang K; Wen X; Hu J; Wang S; Chen H
    ChemSusChem; 2019 Aug; 12(15):3602-3614. PubMed ID: 31081248
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Highly Conductive MOF of Graphene Analogue Ni
    Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W
    Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries.
    Sun L; Li M; Jiang Y; Kong W; Jiang K; Wang J; Fan S
    Nano Lett; 2014 Jul; 14(7):4044-9. PubMed ID: 24884659
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries.
    Chen T; Cheng B; Zhu G; Chen R; Hu Y; Ma L; Lv H; Wang Y; Liang J; Tie Z; Jin Z; Liu J
    Nano Lett; 2017 Jan; 17(1):437-444. PubMed ID: 28073275
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A nanostructured porous carbon/MoO
    Zhou HY; Sui ZY; Zhao FL; Sun YN; Wang HY; Han BH
    Nanotechnology; 2020 Jul; 31(31):315601. PubMed ID: 32294640
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nb
    Guo P; Sun K; Shang X; Liu D; Wang Y; Liu Q; Fu Y; He D
    Small; 2019 Oct; 15(40):e1902363. PubMed ID: 31419025
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Promoted lithium polysulfide conversion and immobilization by conductive titanium oxynitride-carbon architecture design for advanced lithium-sulfur batteries.
    Guo J; Wang H; Luo Y; An H; Zhang Z; Liu G; Li J
    Nanoscale; 2021 Nov; 13(42):17929-17938. PubMed ID: 34693413
    [TBL] [Abstract][Full Text] [Related]  

  • 74. WO
    Lee SK; Kim H; Bang S; Myung ST; Sun YK
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33450880
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium-Sulfur Batteries.
    Liu Q; Han X; Park H; Kim J; Xiong P; Yuan H; Yeon JS; Kang Y; Park JM; Dou Q; Kim BK; Park HS
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17978-17987. PubMed ID: 33821600
    [TBL] [Abstract][Full Text] [Related]  

  • 76. C-S Bonds in Sulfur-Embedded Graphene, Carbon Nanotubes, and Flake Graphite Cathodes for Lithium-Sulfur Batteries.
    Feng Y; Zhang H; Zhang Y; Qu X
    ACS Omega; 2019 Oct; 4(15):16352-16359. PubMed ID: 31616813
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium-sulfur batteries.
    Pu Y; Wu W; Liu J; Liu T; Ding F; Zhang J; Tang Z
    RSC Adv; 2018 May; 8(33):18604-18612. PubMed ID: 35541119
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Facile synthesis of Co
    Zhang Z; Zhou S; Mei T; Gou Y; Xie F; Liu C; Wang X
    Dalton Trans; 2020 Jun; 49(25):8591-8600. PubMed ID: 32542285
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Boosting polysulfides immobilization and conversion through CoS
    Song Y; Wang J; Li X; Zhao C; Huo J; He C
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):963-972. PubMed ID: 34785471
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Architecture and Performance of the Novel Sulfur Host Material Based on Ti
    Zeng P; Chen M; Jiang S; Li Y; Xie X; Liu H; Hu X; Wu C; Shu H; Wang X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22439-22448. PubMed ID: 31149803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.