These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32990498)

  • 1. Study on soft sensor modeling method for sign of contaminated fermentation broth in Chlortetracycline fermentation process.
    Wang MC; Han X; Sun YM; Sun QY; Chen XG
    Prep Biochem Biotechnol; 2021; 51(1):76-85. PubMed ID: 32990498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the prediction of the contamination symptoms in the fermentation process of Chlortetracycline based on soft sensor modeling method.
    Sun Y; Tang L; Sun Q; Wang M; Han X; Chen X
    Technol Health Care; 2019; 27(S1):205-215. PubMed ID: 31045540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online prediction of total sugar content and optimal control of glucose feed rate during chlortetracycline fermentation based on soft sensor modeling.
    Wang P; Sun Q; Qiao Y; Liu L; Han X; Chen X
    Math Biosci Eng; 2022 Jul; 19(10):10687-10709. PubMed ID: 36032013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.
    Jin H; Chen X; Yang J; Wu L; Wang L
    ISA Trans; 2014 Nov; 53(6):1822-37. PubMed ID: 25245525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Sensor Modeling Method Based on Improved KH-RBF Neural Network Bacteria Concentration in Marine Alkaline Protease Fermentation Process.
    Tang H; Yang Z; Xu F; Wang Q; Wang B
    Appl Biochem Biotechnol; 2022 Oct; 194(10):4530-4545. PubMed ID: 35507253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of antimicrobial agents on contamination and chlortetracycline production.
    Welward L; Hal'ama D
    Folia Microbiol (Praha); 1978; 23(1):12-7. PubMed ID: 414978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of fungal biomass using multiphase artificial neural network based dynamic soft sensor.
    Murugan C; Natarajan P
    J Microbiol Methods; 2019 Apr; 159():5-11. PubMed ID: 30735699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft-sensor development for monitoring the lysine fermentation process.
    Tokuyama K; Shimodaira Y; Kodama Y; Matsui R; Kusunose Y; Fukushima S; Nakai H; Tsuji Y; Toya Y; Matsuda F; Shimizu H
    J Biosci Bioeng; 2021 Aug; 132(2):183-189. PubMed ID: 33958301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended fed-batch fermentation of a C5/C6 optimised yeast strain on wheat straw hydrolysate using an online refractive index sensor to measure the relative fermentation rate.
    Knudsen JD; Rønnow B
    Sci Rep; 2020 Apr; 10(1):6705. PubMed ID: 32317712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis.
    Sue T; Obolonkin V; Griffiths H; Villas-Bôas SG
    Appl Environ Microbiol; 2011 Nov; 77(21):7605-10. PubMed ID: 21890679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate and cost-effective prediction of HBsAg titer in industrial scale fermentation process of recombinant Pichia pastoris by using neural network based soft sensor.
    Hosseini SN; Javidanbardan A; Khatami M
    Biotechnol Appl Biochem; 2019 Jul; 66(4):681-689. PubMed ID: 31169323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.
    Garnier A; Gaillet B
    Biotechnol Bioeng; 2015 Dec; 112(12):2468-74. PubMed ID: 26038085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.
    Xie D; Miller E; Sharpe P; Jackson E; Zhu Q
    Biotechnol Bioeng; 2017 Apr; 114(4):798-812. PubMed ID: 27861744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol Production from
    Kim SK; Nguyen CM; Ko EH; Kim IC; Kim JS; Kim JC
    J Microbiol Biotechnol; 2017 Jun; 27(6):1112-1119. PubMed ID: 28372036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft sensor design based on phase partition ensemble of LSSVR models for nonlinear batch processes.
    Sheng XC; Xiong WL
    Math Biosci Eng; 2019 Dec; 17(2):1901-1921. PubMed ID: 32233614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-sensor modeling for L-lysine fermentation process based on hybrid ICS-MLSSVM.
    Wang B; Shahzad M; Zhu X; Ur Rehman K; Ashfaq M; Abubakar M
    Sci Rep; 2020 Jul; 10(1):11630. PubMed ID: 32669628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of recurrent neural network for online prediction of cell density of recombinant Pichia pastoris producing HBsAg.
    Beiroti A; Aghasadeghi MR; Hosseini SN; Norouzian D
    Prep Biochem Biotechnol; 2019; 49(4):352-359. PubMed ID: 30707051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.
    Mears L; Stocks SM; Albaek MO; Cassells B; Sin G; Gernaey KV
    Biotechnol Bioeng; 2017 Jul; 114(7):1459-1468. PubMed ID: 28240344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Repeated batch and fed-batch process for astaxanthin production by Phaffia rhodozyma].
    Xiao A; Ni H; Li L; Cai H
    Sheng Wu Gong Cheng Xue Bao; 2011 Apr; 27(4):598-605. PubMed ID: 21847995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis.
    Nakanishi SC; Soares LB; Biazi LE; Nascimento VM; Costa AC; Rocha GJM; Ienczak JL
    Biotechnol Bioeng; 2017 Oct; 114(10):2211-2221. PubMed ID: 28627711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.