These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Desmoglein-3 induces YAP phosphorylation and inactivation during collective migration of oral carcinoma cells. Ahmad US; Parkinson EK; Wan H Mol Oncol; 2022 Apr; 16(8):1625-1649. PubMed ID: 35000271 [TBL] [Abstract][Full Text] [Related]
3. PAICS/DYRK3 Multienzyme Interactions as Coregulators of Purinosome Formation and Metabolism on Radioresistance in Oral Squamous Cell Carcinoma. Huang CS; Hsieh MS; Yadav VK; Wu YC; Liu SC; Yeh CT; Huang MS Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139175 [TBL] [Abstract][Full Text] [Related]
4. Macrophage-Derived Exosomal miR-31-5p Promotes Oral Squamous Cell Carcinoma Tumourigenesis Through the Large Tumor Suppressor 2-Mediated Hippo Signalling Pathway. Yuan Y; Wang Z; Chen M; Jing Y; Shu W; Xie Z; Li Z; Xu J; He F; Jiao P; Wang J; Xu J; Xia Y; Liu S; Du H; Li H; Dai L; Dai Y; Zhang Y J Biomed Nanotechnol; 2021 May; 17(5):822-837. PubMed ID: 34082869 [TBL] [Abstract][Full Text] [Related]
5. A Five-mRNA Expression Signature to Predict Survival in Oral Squamous Cell Carcinoma by Integrated Bioinformatic Analyses. Guo H; Li C; Su X; Huang X Genet Test Mol Biomarkers; 2021 Aug; 25(8):517-527. PubMed ID: 34406843 [No Abstract] [Full Text] [Related]
6. circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Peng QS; Cheng YN; Zhang WB; Fan H; Mao QH; Xu P Cell Death Dis; 2020 Feb; 11(2):112. PubMed ID: 32041942 [TBL] [Abstract][Full Text] [Related]
7. The development of radioresistant oral squamous carcinoma cell lines and identification of radiotherapy-related biomarkers. Huang J; Meng Q; Liu R; Li H; Li Y; Yang Z; Wang Y; Wanyan C; Yang X; Wei J Clin Transl Oncol; 2023 Oct; 25(10):3006-3020. PubMed ID: 37029240 [TBL] [Abstract][Full Text] [Related]
8. Identification of a Gene Prognostic Signature for Oral Squamous Cell Carcinoma by RNA Sequencing and Bioinformatics. Zhang YY; Mao MH; Han ZX Biomed Res Int; 2021; 2021():6657767. PubMed ID: 33869632 [TBL] [Abstract][Full Text] [Related]
9. [Advances in Hippo signaling pathway in oral squamous cell carcinoma]. Xu WQ; Xu XH; Liu C; Yao LL; Wang XM Zhonghua Kou Qiang Yi Xue Za Zhi; 2021 Feb; 56(2):221-225. PubMed ID: 33557511 [TBL] [Abstract][Full Text] [Related]
10. A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma. Hiemer SE; Zhang L; Kartha VK; Packer TS; Almershed M; Noonan V; Kukuruzinska M; Bais MV; Monti S; Varelas X Mol Cancer Res; 2015 Jun; 13(6):957-68. PubMed ID: 25794680 [TBL] [Abstract][Full Text] [Related]
11. Identification of Candidate Target Genes and Immune Cells in Oral Squamous Cell Carcinoma. Xie P; Wu S; Guo L; Ren J; Cai K; Zhou M; Liu W; Yang S Comput Math Methods Med; 2021; 2021():5802110. PubMed ID: 35003322 [TBL] [Abstract][Full Text] [Related]
12. Knockdown of lncRNA LEF1-AS1 inhibited the progression of oral squamous cell carcinoma (OSCC) via Hippo signaling pathway. Zhang C; Bao C; Zhang X; Lin X; Pan D; Chen Y Cancer Biol Ther; 2019; 20(9):1213-1222. PubMed ID: 30983488 [TBL] [Abstract][Full Text] [Related]
13. A Novel Immune-Related Gene Signature to Identify the Tumor Microenvironment and Prognose Disease Among Patients With Oral Squamous Cell Carcinoma Patients Using ssGSEA: A Bioinformatics and Biological Validation Study. Chen Y; Feng Y; Yan F; Zhao Y; Zhao H; Guo Y Front Immunol; 2022; 13():922195. PubMed ID: 35935989 [TBL] [Abstract][Full Text] [Related]
14. Translational genomics and recent advances in oral squamous cell carcinoma. Chai AWY; Lim KP; Cheong SC Semin Cancer Biol; 2020 Apr; 61():71-83. PubMed ID: 31542510 [TBL] [Abstract][Full Text] [Related]
15. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Fadlullah MZ; Chiang IK; Dionne KR; Yee PS; Gan CP; Sam KK; Tiong KH; Ng AK; Martin D; Lim KP; Kallarakkal TG; Mustafa WM; Lau SH; Abraham MT; Zain RB; Rahman ZA; Molinolo A; Patel V; Gutkind JS; Tan AC; Cheong SC Oncotarget; 2016 May; 7(19):27802-18. PubMed ID: 27050151 [TBL] [Abstract][Full Text] [Related]
16. Gene Expression Clustering and Selected Head and Neck Cancer Gene Signatures Highlight Risk Probability Differences in Oral Premalignant Lesions. Carenzo A; Serafini MS; Roca E; Paderno A; Mattavelli D; Romani C; Saintigny P; Koljenović S; Licitra L; De Cecco L; Bossi P Cells; 2020 Aug; 9(8):. PubMed ID: 32756466 [TBL] [Abstract][Full Text] [Related]
17. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Kartha VK; Alamoud KA; Sadykov K; Nguyen BC; Laroche F; Feng H; Lee J; Pai SI; Varelas X; Egloff AM; Snyder-Cappione JE; Belkina AC; Bais MV; Monti S; Kukuruzinska MA Genome Med; 2018 Jul; 10(1):54. PubMed ID: 30029671 [TBL] [Abstract][Full Text] [Related]
18. Identifying Drug Targets of Oral Squamous Cell Carcinoma through a Systems Biology Method and Genome-Wide Microarray Data for Drug Discovery by Deep Learning and Drug Design Specifications. Lin YC; Chen BS Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142321 [TBL] [Abstract][Full Text] [Related]
19. Circ-HIPK3 regulates YAP1 expression by sponging miR-381-3p to promote oral squamous cell carcinoma development. Bi L; Zhang C; Yao Y; He Z J Biosci; 2021; 46():. PubMed ID: 33737493 [TBL] [Abstract][Full Text] [Related]
20. Pathway analysis of a genome‑wide association study on a long non‑coding RNA expression profile in oral squamous cell carcinoma. Qiu YL; Liu YH; Ban JD; Wang WJ; Han M; Kong P; Li BH Oncol Rep; 2019 Feb; 41(2):895-907. PubMed ID: 30431131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]