These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 32990638)
21. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone. Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210 [TBL] [Abstract][Full Text] [Related]
22. The accuracy of passive phone sensors in predicting daily mood. Pratap A; Atkins DC; Renn BN; Tanana MJ; Mooney SD; Anguera JA; Areán PA Depress Anxiety; 2019 Jan; 36(1):72-81. PubMed ID: 30129691 [TBL] [Abstract][Full Text] [Related]
23. Using Passive Smartphone Sensing for Improved Risk Stratification of Patients With Depression and Diabetes: Cross-Sectional Observational Study. Sarda A; Munuswamy S; Sarda S; Subramanian V JMIR Mhealth Uhealth; 2019 Jan; 7(1):e11041. PubMed ID: 30694197 [TBL] [Abstract][Full Text] [Related]
24. A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors. Kołakowska A; Szwoch W; Szwoch M Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171646 [TBL] [Abstract][Full Text] [Related]
25. A Scalable Smartwatch-Based Medication Intake Detection System Using Distributed Machine Learning. Fozoonmayeh D; Le HV; Wittfoth E; Geng C; Ha N; Wang J; Vasilenko M; Ahn Y; Woodbridge DM J Med Syst; 2020 Feb; 44(4):76. PubMed ID: 32112271 [TBL] [Abstract][Full Text] [Related]
26. Personalized prediction of smartphone-based psychotherapeutic micro-intervention success using machine learning. Meinlschmidt G; Tegethoff M; Belardi A; Stalujanis E; Oh M; Jung EK; Kim HC; Yoo SS; Lee JH J Affect Disord; 2020 Mar; 264():430-437. PubMed ID: 31787419 [TBL] [Abstract][Full Text] [Related]
27. Leveraging Mobile Phone Sensors, Machine Learning, and Explainable Artificial Intelligence to Predict Imminent Same-Day Binge-drinking Events to Support Just-in-time Adaptive Interventions: Algorithm Development and Validation Study. Bae SW; Suffoletto B; Zhang T; Chung T; Ozolcer M; Islam MR; Dey AK JMIR Form Res; 2023 May; 7():e39862. PubMed ID: 36809294 [TBL] [Abstract][Full Text] [Related]
28. Using digital phenotyping to classify bipolar disorder and unipolar disorder - exploratory findings using machine learning models. Faurholt-Jepsen M; Rohani DA; Busk J; Tønning ML; Frost M; Bardram JE; Kessing LV Eur Neuropsychopharmacol; 2024 Apr; 81():12-19. PubMed ID: 38310716 [TBL] [Abstract][Full Text] [Related]
29. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study. Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739 [TBL] [Abstract][Full Text] [Related]
30. Noninvasive Hemoglobin Level Prediction in a Mobile Phone Environment: State of the Art Review and Recommendations. Hasan MK; Aziz MH; Zarif MII; Hasan M; Hashem M; Guha S; Love RR; Ahamed S JMIR Mhealth Uhealth; 2021 Apr; 9(4):e16806. PubMed ID: 33830065 [TBL] [Abstract][Full Text] [Related]
31. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. Haines-Delmont A; Chahal G; Bruen AJ; Wall A; Khan CT; Sadashiv R; Fearnley D JMIR Mhealth Uhealth; 2020 Jun; 8(6):e15901. PubMed ID: 32442152 [TBL] [Abstract][Full Text] [Related]
32. mPulse Mobile Sensing Model for Passive Detection of Impulsive Behavior: Exploratory Prediction Study. Wen H; Sobolev M; Vitale R; Kizer J; Pollak JP; Muench F; Estrin D JMIR Ment Health; 2021 Jan; 8(1):e25019. PubMed ID: 33502330 [TBL] [Abstract][Full Text] [Related]
33. Smartphone-Based Hand Function Assessment: Systematic Review. Fu Y; Zhang Y; Ye B; Babineau J; Zhao Y; Gao Z; Mihailidis A J Med Internet Res; 2024 Sep; 26():e51564. PubMed ID: 39283676 [TBL] [Abstract][Full Text] [Related]
34. Objectively Quantifying Pediatric Psychiatric Severity Using Artificial Intelligence, Voice Recognition Technology, and Universal Emotions: Pilot Study for Artificial Intelligence-Enabled Innovation to Address Youth Mental Health Crisis. Caulley D; Alemu Y; Burson S; Cárdenas Bautista E; Abebe Tadesse G; Kottmyer C; Aeschbach L; Cheungvivatpant B; Sezgin E JMIR Res Protoc; 2023 Oct; 12():e51912. PubMed ID: 37870890 [TBL] [Abstract][Full Text] [Related]