These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32990643)

  • 1. Thiol-based switching mechanisms of stress-sensing chaperones.
    Ulrich K; Schwappach B; Jakob U
    Biol Chem; 2021 Feb; 402(3):239-252. PubMed ID: 32990643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond transcription--new mechanisms for the regulation of molecular chaperones.
    Winter J; Jakob U
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-regulated chaperones in cell stress responses.
    Ulrich K
    Biochem Soc Trans; 2023 Jun; 51(3):1169-1177. PubMed ID: 37140269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From guide to guard-activation mechanism of the stress-sensing chaperone Get3.
    Ulrich K; Farkas Á; Chan O; Katamanin O; Schwappach B; Jakob U
    Mol Cell; 2022 Sep; 82(17):3226-3238.e7. PubMed ID: 35839781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.
    Rimon O; Suss O; Goldenberg M; Fassler R; Yogev O; Amartely H; Propper G; Friedler A; Reichmann D
    Antioxid Redox Signal; 2017 Nov; 27(15):1252-1267. PubMed ID: 28394178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-Activated Chaperones: A First Line of Defense.
    Voth W; Jakob U
    Trends Biochem Sci; 2017 Nov; 42(11):899-913. PubMed ID: 28893460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry.
    Fassler R; Edinger N; Rimon O; Reichmann D
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.
    Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C
    Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintaining a Healthy Proteome during Oxidative Stress.
    Reichmann D; Voth W; Jakob U
    Mol Cell; 2018 Jan; 69(2):203-213. PubMed ID: 29351842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How chaperones fold proteins.
    Beissinger M; Buchner J
    Biol Chem; 1998 Mar; 379(3):245-59. PubMed ID: 9563819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The redox switch that regulates molecular chaperones.
    Conway ME; Lee C
    Biomol Concepts; 2015 Aug; 6(4):269-84. PubMed ID: 26352357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-based copper handling by the copper chaperone Atox1.
    Hatori Y; Inouye S; Akagi R
    IUBMB Life; 2017 Apr; 69(4):246-254. PubMed ID: 28294521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation in host-pathogen interactions: thiol switches and beyond.
    Varatnitskaya M; Degrossoli A; Leichert LI
    Biol Chem; 2021 Feb; 402(3):299-316. PubMed ID: 33021957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-independent molecular chaperone activity generated under reducing conditions.
    Leppert A; Chen G; Lianoudaki D; Williams C; Zhong X; Gilthorpe JD; Landreh M; Johansson J
    Protein Sci; 2022 Aug; 31(8):e4378. PubMed ID: 35900025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex dynamics of chaperone-protein interactions under cellular stress.
    Tsigelny IF; Nigam SK
    Cell Biochem Biophys; 2004; 40(3):263-76. PubMed ID: 15211027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of the pH-dependent Activity of Escherichia coli Chaperone HdeB In Vitro and In Vivo.
    Dahl JU; Koldewey P; Bardwell JC; Jakob U
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Defense Systems against the Neutrophilic Oxidant Hypochlorous Acid.
    Sultana S; Foti A; Dahl JU
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32152198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance.
    Banerjee M; Chakravarty D; Ballal A
    BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.